論文の概要: Near-optimal algorithms for private estimation and sequential testing of collision probability
- arxiv url: http://arxiv.org/abs/2504.13804v1
- Date: Fri, 18 Apr 2025 17:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 14:44:55.358013
- Title: Near-optimal algorithms for private estimation and sequential testing of collision probability
- Title(参考訳): 衝突確率のプライベート推定とシーケンシャルテストのための近似アルゴリズム
- Authors: Robert Busa-Fekete, Umar Syed,
- Abstract要約: 我々は、$(alpha, beta)$-local differential privacy を満たすアルゴリズムを記述し、最大$epsilon$の誤差で衝突確率を推定する。
また、衝突確率を$epsilon$で分離した衝突確率値を区別できる逐次テストアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.62060928868899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
- Abstract(参考訳): 我々は,多くの科学分野において広く用いられている離散分布の拡散の基本的な尺度である<emph{collision probability} を推定し,検証するための新しいアルゴリズムを提案する。
我々は、$(\alpha, \beta)$-local differential privacy を満足するアルゴリズムを記述し、$\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$\alpha \le 1$のサンプルを使用し、最大で$\epsilon$で衝突確率を推定する。
また,$\epsilon$が未知であっても,$\tilde{O}(\frac{1}{\epsilon^2})$サンプルを用いて,$\epsilon$で分離された衝突確率を区別できる衝突確率の逐次テストアルゴリズムを提案する。
我々のアルゴリズムは最適なサンプルの複雑さをほとんど持っており、実験では従来の手法よりもはるかに少ないサンプルを必要とすることを示した。
関連論文リスト
- Sample-Optimal Locally Private Hypothesis Selection and the Provable
Benefits of Interactivity [8.100854060749212]
本研究では,局所的な差分プライバシーの制約下での仮説選択の問題について検討する。
我々は$varepsilon$-locally-differentially-private ($varepsilon$-LDP)アルゴリズムを考案し、$Thetaleft(fracklog kalpha2min varepsilon2,1 right)$を使って$d_TV(h,hatf)leq alpha + 9 min_fin MathcalFを保証する。
論文 参考訳(メタデータ) (2023-12-09T19:22:10Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Succinct quantum testers for closeness and $k$-wise uniformity of probability distributions [2.3466828785520373]
確率分布の近さ特性と$k$-wise均一性をテストする基本的な問題に対する潜在的な量子スピードアップについて検討する。
我々は、$ell1$-および$ell2$-closenessテストの量子クエリ複雑性が$O(sqrtn/varepsilon)$と$O(sqrtnk/varepsilon)$であることを示す。
クエリ複雑性を$O(sqrtnk/varepsilon)で表した最初の量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-25T15:32:37Z) - Replicable Clustering [57.19013971737493]
我々は,統計学的な$k$-medians,統計学的な$k$-means,統計学的な$k$-centers問題のアルゴリズムをブラックボックス方式で近似ルーチンを用いて提案する。
理論的結果を検証するブラックボックスとしてsklearnの$k$-means++実装を用いた2次元合成分布の実験も行っている。
論文 参考訳(メタデータ) (2023-02-20T23:29:43Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - Private High-Dimensional Hypothesis Testing [4.133655523622441]
我々は高次元分布の個人性テストのための改良された差分プライベートアルゴリズムを提供する。
具体的には、ある固定された$mu*$に対して$mathcalN(mu*, Sigma)$、または少なくとも$alpha$の総変動距離を持つ$mathcalN(mu*, Sigma)$に由来するかどうかをテストすることができる。
論文 参考訳(メタデータ) (2022-03-03T06:25:48Z) - Optimal Testing of Discrete Distributions with High Probability [49.19942805582874]
高確率状態に着目して離散分布を試験する問題について検討する。
一定の要素でサンプル最適である近接性および独立性テストのための最初のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-14T16:09:17Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - Locally Private Hypothesis Selection [96.06118559817057]
我々は、$mathcalQ$から$p$までの総変動距離が最良の分布に匹敵する分布を出力する。
局所的な差分プライバシーの制約は、コストの急激な増加を引き起こすことを示す。
提案アルゴリズムは,従来手法のラウンド複雑性を指数関数的に改善する。
論文 参考訳(メタデータ) (2020-02-21T18:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。