論文の概要: Framework, Standards, Applications and Best practices of Responsible AI : A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2504.13979v1
- Date: Fri, 18 Apr 2025 03:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 08:04:59.04635
- Title: Framework, Standards, Applications and Best practices of Responsible AI : A Comprehensive Survey
- Title(参考訳): 責任あるAIのフレームワーク、標準、応用およびベストプラクティス : 包括的調査
- Authors: Thippa Reddy Gadekallu, Kapal Dev, Sunder Ali Khowaja, Weizheng Wang, Hailin Feng, Kai Fang, Sharnil Pandya, Wei Wang,
- Abstract要約: RAIは、共通のフレームワークと標準フレームワークに合わせた人工知能の使用に関連する倫理の組合せである。
現在、RAIの倫理基準と実装は分離されており、各業界が倫理的にAIを使用するための独自の標準に従うことを推奨している。
社会的プレッシャーと非倫理的なAIの使用方法は、実装よりもRAI設計を強制する。
- 参考スコア(独自算出の注目度): 20.554868638297688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Responsible Artificial Intelligence (RAI) is a combination of ethics associated with the usage of artificial intelligence aligned with the common and standard frameworks. This survey paper extensively discusses the global and national standards, applications of RAI, current technology and ongoing projects using RAI, and possible challenges in implementing and designing RAI in the industries and projects based on AI. Currently, ethical standards and implementation of RAI are decoupled which caters each industry to follow their own standards to use AI ethically. Many global firms and government organizations are taking necessary initiatives to design a common and standard framework. Social pressure and unethical way of using AI forces the RAI design rather than implementation.
- Abstract(参考訳): 責任人工知能(Responsible Artificial Intelligence, RAI)は、人工知能と標準フレームワークの併用に関する倫理の組合せである。
本調査では,AIをベースとした産業やプロジェクトにおいて,国際的および国家的標準,RAIの適用,現在の技術,RAIを用いた進行中のプロジェクト,RAIの実装と設計に関する課題を幅広く論じる。
現在、RAIの倫理基準と実装は分離されており、各業界が倫理的にAIを使用するための独自の標準に従うことを推奨している。
多くのグローバル企業や政府機関は、共通かつ標準的な枠組みを設計するための必要な取り組みを行っている。
社会的プレッシャーと非倫理的なAIの使用方法は、実装よりもRAI設計を強制する。
関連論文リスト
- Who is Responsible? The Data, Models, Users or Regulations? Responsible Generative AI for a Sustainable Future [7.976680307696195]
責任人工知能(Responsible Artificial Intelligence, RAI)は、AIシステムの開発と展開における倫理的懸念に対処するための重要なフレームワークとして登場した。
本稿では、ChatGPT後における倫理的、透明性があり、説明可能なAIシステムを実装する上での課題と機会について考察する。
論文 参考訳(メタデータ) (2025-01-15T20:59:42Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
AIシステムのセキュリティインシデントを記述し報告するためには、具体的が必要である、と我々は主張する。
非AIセキュリティまたは汎用AI安全インシデントレポートの既存のフレームワークは、AIセキュリティの特定の特性をキャプチャするには不十分である。
論文 参考訳(メタデータ) (2024-12-19T13:50:26Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
私は、責任と倫理的AIを促進する努力が、確立された文脈規範に対するこの軽視に必然的に貢献し、正当化することができると論じます。
私は、道徳的保護よりも道徳的革新のAI倫理における現在の狭い優先順位付けに疑問を呈する。
論文 参考訳(メタデータ) (2024-12-06T15:36:13Z) - Do Responsible AI Artifacts Advance Stakeholder Goals? Four Key Barriers Perceived by Legal and Civil Stakeholders [59.17981603969404]
責任あるAI(RAI)コミュニティは、透明性を促進し、AIシステムのガバナンスをサポートするために、多数のプロセスとアーティファクトを導入している。
我々は、責任あるAI活動に関する政策と擁護を通知する19の政府、法律、市民社会の利害関係者と半構造化されたインタビューを行う。
我々は、これらの信念を4つの障壁にまとめて、RAIアーティファクトが(必然的に)市民社会、政府、産業間での権力関係を再構成する方法を説明する。
論文 参考訳(メタデータ) (2024-08-22T00:14:37Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Developing and Deploying Industry Standards for Artificial Intelligence in Education (AIED): Challenges, Strategies, and Future Directions [22.65961106637345]
AIED(Artificial Intelligence in Education)は、教育実践に革命をもたらすことを約束している。
AIEDソリューションの開発とデプロイにおける標準化されたプラクティスの欠如は、断片化されたエコシステムにつながった。
この記事では、AIEDにおける業界標準の開発と実装に関する重要なニーズに対処することを目的としている。
論文 参考訳(メタデータ) (2024-03-13T22:38:08Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
ハイレベルなAI倫理原則と、AI専門家のための低レベルな具体的なプラクティスの間には、大きなギャップがある。
我々は、理論と実践のギャップを埋めるために設計された、信頼に値するAIのための新しい総合的なフレームワークを開発する。
私たちの目標は、AIプロフェッショナルが信頼できるAIの倫理的側面を確実にナビゲートできるようにすることです。
論文 参考訳(メタデータ) (2024-02-08T01:05:16Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
この論文は、AIが米国経済のあらゆる分野に与える影響と、ビジネス、政府、アカデミック、そして市民社会にまたがる組織に与える影響を強調している。
我々の議論は、包括的なテーマとして構成された11の基本的な「倫理的原則」を探求する。
これらは透明性、正義、公正、平等、非正当性、責任、説明責任、プライバシー、利益、自由、自律、信頼、尊厳、持続可能性、連帯性を含む。
論文 参考訳(メタデータ) (2023-10-09T14:29:00Z) - A Rapid Review of Responsible AI frameworks: How to guide the
development of ethical AI [1.3734044451150018]
我々は、Responsible AI(RAI)アプリケーションの開発とデプロイを支援するために、原則、ガイドライン、および/またはツールを提供するいくつかのフレームワークを迅速にレビューする。
実世界のプロジェクト実装における技術的利害関係者と非技術的利害関係者の両方をサポートする"キャッチオール"フレームワークは存在しないことが明らかとなった。
論文 参考訳(メタデータ) (2023-06-08T07:47:18Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。