論文の概要: Causal pieces: analysing and improving spiking neural networks piece by piece
- arxiv url: http://arxiv.org/abs/2504.14015v1
- Date: Fri, 18 Apr 2025 18:07:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 05:53:23.516001
- Title: Causal pieces: analysing and improving spiking neural networks piece by piece
- Title(参考訳): 因果片:一片ずつのスパイクニューラルネットワークの解析と改善
- Authors: Dominik Dold, Philipp Christian Petersen,
- Abstract要約: 我々は「線形ピース」の概念から導かれたスパイクニューラルネットワーク(SNN)の新たな概念を紹介した。
SNNの入力領域は、出力スパイク時間が局所的にリプシッツ連続である別の因果領域に分解されることを示す。
と呼ぶ領域の数は、SNNの近似能力の尺度である。
- 参考スコア(独自算出の注目度): 2.255961793913651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel concept for spiking neural networks (SNNs) derived from the idea of "linear pieces" used to analyse the expressiveness and trainability of artificial neural networks (ANNs). We prove that the input domain of SNNs decomposes into distinct causal regions where its output spike times are locally Lipschitz continuous with respect to the input spike times and network parameters. The number of such regions - which we call "causal pieces" - is a measure of the approximation capabilities of SNNs. In particular, we demonstrate in simulation that parameter initialisations which yield a high number of causal pieces on the training set strongly correlate with SNN training success. Moreover, we find that feedforward SNNs with purely positive weights exhibit a surprisingly high number of causal pieces, allowing them to achieve competitive performance levels on benchmark tasks. We believe that causal pieces are not only a powerful and principled tool for improving SNNs, but might also open up new ways of comparing SNNs and ANNs in the future.
- Abstract(参考訳): 人工ニューラルネットワーク(ANN)の表現性および訓練性を分析するために用いられる「線形部品」の概念から導かれる、スパイクニューラルネットワーク(SNN)の新たな概念を紹介した。
SNNの入力領域は、入力スパイク時間とネットワークパラメータに関して、出力スパイク時間が局所的にリプシッツ連続である別の因果領域に分解されることを証明した。
と呼ぶ領域の数は、SNNの近似能力の尺度である。
特に,学習セットの因果成分を多数生成するパラメータ初期化がSNN訓練の成功と強く相関していることがシミュレーションで実証された。
さらに、純粋に正の重みを持つフィードフォワードSNNは驚くほど多くの因果的要素を示し、ベンチマークタスクにおける競合性能レベルを達成することができる。
我々は、因果的断片はSNNを改善するための強力で原則化されたツールであるだけでなく、将来SNNとANNを比較する新しい方法も開くと考えている。
関連論文リスト
- Enhancing Adversarial Robustness in SNNs with Sparse Gradients [46.15229142258264]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率の高い操作と生物学的にインスパイアされた構造に対して大きな注目を集めている。
既存の技術は、ANNから適応したものであれ、SNNのために特別に設計されたものであれ、SNNの訓練や強力な攻撃に対する防御に制限がある。
本稿では,SNNの頑健性を高めるための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T05:39:27Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
スパイキングネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる有望なエネルギー効率の代替手段である。
本研究では,SNNにおける固有冗長性に関する3つの重要な疑問に焦点をあてる。
本稿では,SNNの冗長性を活用するためのアドバンストアテンション(ASA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:58:25Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本研究では,SNNの性能に及ぼすクロスバー非理想性と本質性の影響について検討した。
論文 参考訳(メタデータ) (2022-06-20T07:07:41Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率と低レイテンシを含む、魅力的な潜在的な利点を提供する。
高性能SNNにとって有望な領域の1つは、テンプレートマッチングと画像認識である。
本研究では,視覚的位置認識(VPR)タスクのための最初の高性能SNNを紹介する。
論文 参考訳(メタデータ) (2021-09-14T05:40:40Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性とニューロモルフィックチップの高エネルギー効率により、非常に重要視されている。
ほとんどの既存の方法は、ANNsとSNNsの違いを無視するSNNsに人工ニューラルネットワーク(ANNs)のプルーニングアプローチを直接適用する。
本稿では,ネットワーク構造を無訓練でシームレスに最適化可能な,snsの接続性と重み付けの合同学習アルゴリズムgradle rewiring (gradr)を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:05:53Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。