A CMOS Probabilistic Computing Chip With In-situ hardware Aware Learning
- URL: http://arxiv.org/abs/2504.14070v3
- Date: Wed, 30 Apr 2025 05:38:53 GMT
- Title: A CMOS Probabilistic Computing Chip With In-situ hardware Aware Learning
- Authors: Jinesh Jhonsa, William Whitehead, David McCarthy, Shuvro Chowdhury, Kerem Camsari, Luke Theogarajan,
- Abstract summary: This paper demonstrates a probabilistic bit physics inspired solver with 440 spins configured in a Chimera graph, occupying an area of 0.44 mm2.<n>We validate the chip's ability to perform probabilistic computing tasks such as modeling logic gates and full adders, as well as optimization tasks such as MaxCut.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper demonstrates a probabilistic bit physics inspired solver with 440 spins configured in a Chimera graph, occupying an area of 0.44 mm^2. Area efficiency is maximized through a current-mode implementation of the neuron update circuit, standard cell design for analog blocks pitch-matched to digital blocks, and a shared power supply for both digital and analog components. Process variation related mismatches introduced by this approach are effectively mitigated using a hardware aware contrastive divergence algorithm during training. We validate the chip's ability to perform probabilistic computing tasks such as modeling logic gates and full adders, as well as optimization tasks such as MaxCut, demonstrating its potential for AI and machine learning applications.
Related papers
- KALAM: toolKit for Automating high-Level synthesis of Analog computing systeMs [5.090653251547252]
This paper introduces KALAM, which leverages factor graphs as the foundational paradigm for MP-based analog computing systems.
Using Python scripting language, the KALAM automation flow translates an input factor graph to its equivalent SPICE-compatible circuit netlist.
We demonstrate KALAM's versatility for tasks such as Bayesian inference, Low-Density Parity Check (LDPC) decoding, and Artificial Neural Networks (ANN)
arXiv Detail & Related papers (2024-10-30T12:04:22Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - A full-stack view of probabilistic computing with p-bits: devices,
architectures and algorithms [0.014319921806060482]
We provide a full-stack review of probabilistic computing with p-bits.
We argue that p-bits could be used to build energy-efficient probabilistic systems.
We outline the main applications of probabilistic computers ranging from machine learning to AI.
arXiv Detail & Related papers (2023-02-13T15:36:07Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Stochastic Neuromorphic Circuits for Solving MAXCUT [0.6067748036747219]
Finding the maximum cut of a graph (MAXCUT) is a classic optimization problem that has motivated parallel algorithm development.
Neuromorphic computing uses the organizing principles of the nervous system to inspire new parallel computing architectures.
arXiv Detail & Related papers (2022-10-05T22:37:36Z) - Neuromorphic scaling advantages for energy-efficient random walk
computation [0.28144129864580447]
Neuromorphic computing aims to replicate the brain's computational structure and architecture in man-made hardware.
We show that high-degree parallelism and configurability of spiking neuromorphic architectures makes them well-suited to implement random walks via discrete time chains.
We find that NMC platforms, at a sufficient scale, can drastically reduce the energy demands of high-performance computing platforms.
arXiv Detail & Related papers (2021-07-27T19:44:33Z) - Memristive Stochastic Computing for Deep Learning Parameter Optimization [1.6344851071810071]
Computing (SC) is a computing paradigm that allows for the low-cost and low-power of various arithmetic operations using bit streams and digital logic.
We demonstrate that in using a 40-nm Complementary Metal Oxide Semiconductor (CMOS) process our scalable architecture occupies 1.55mm$2$ and consumes approximately 167$mu$W when optimizing parameters of a Convolutional Neural Network (CNN) while it is being trained for a character recognition task, observing no notable reduction in accuracy post-training.
arXiv Detail & Related papers (2021-03-11T07:10:32Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
We propose Einsum Networks (EiNets), a novel implementation design for PCs.
At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation.
We show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation.
arXiv Detail & Related papers (2020-04-13T23:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.