SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
- URL: http://arxiv.org/abs/2504.14286v1
- Date: Sat, 19 Apr 2025 13:06:03 GMT
- Title: SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
- Authors: Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang Wen, Haotian Zhang, Bin Chen, Bing Yu,
- Abstract summary: We present two-Staged history-Resampling Policy Optimization (SRPO), which surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.<n>We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
- Score: 18.275547804539016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which successfully surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B) and relies solely on RL, without prior Supervised Fine-Tuning (SFT). Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, dedicating to offer valuable insights into scaling LLM reasoning capabilities across diverse tasks.
Related papers
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
We propose RL-PLUS, a novel hybrid-policy optimization approach for Large Language Models (LLMs)<n> RL-PLUS synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models.<n>We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach.
arXiv Detail & Related papers (2025-07-31T23:55:29Z) - Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1 [20.92548890511589]
This paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs)<n> RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty.
arXiv Detail & Related papers (2025-06-24T01:39:34Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning [17.459985667824807]
Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise.<n>In this paper, we show how to achieve the general-purpose visual-language reasoning through reinforcement learning.
arXiv Detail & Related papers (2025-06-09T16:20:54Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Training Large Language Models to Reason via EM Policy Gradient [0.27195102129094995]
We introduce an off-policy reinforcement learning algorithm, EM Policy Gradient, to enhance LLM reasoning.
We evaluate the effectiveness of EM Policy Gradient on the GSM8K and MATH (HARD) datasets.
Models fine-tuned with our method exhibit cognitive behaviors, such as sub-problem decomposition, self-verification, and backtracking.
arXiv Detail & Related papers (2025-04-24T01:31:05Z) - d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning [31.531278643184656]
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL)<n>We propose d1, a framework to adapt pre-trained dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL.<n>We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
arXiv Detail & Related papers (2025-04-16T16:08:45Z) - Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
Reinforcement learning with verifiable rewards (RLVR) has demonstrated significant success in enhancing mathematical reasoning and coding performance of large language models (LLMs)<n>We investigate the effectiveness and scalability of RLVR across diverse real-world domains including medicine, chemistry, psychology, economics, and education.<n>We utilize a generative scoring technique that yields soft, model-based reward signals to overcome limitations posed by binary verifications.
arXiv Detail & Related papers (2025-03-31T08:22:49Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning [29.053899071144976]
We propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks.<n>Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy.<n> GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation.
arXiv Detail & Related papers (2025-03-20T12:22:18Z) - Evaluating Mathematical Reasoning Across Large Language Models: A Fine-Grained Approach [15.960271016276447]
We present a systematic evaluation of mathematical reasoning abilities across eight leading Large Language Models (LLMs)<n>Our analyses reveal several key findings: DeepSeek-R1 performs competitively with o1 across most domains and achieves the highest accuracy on the MMLU Formal Logic benchmark.<n>We explore how architectural choices, training paradigms, and optimization strategies contribute to variation in reasoning performance.
arXiv Detail & Related papers (2025-03-13T17:23:45Z) - Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models [24.45348222168512]
We propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability.
Our model achieves an average improvement of $sim$6% across various multimodal math reasoning benchmarks.
Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1.
arXiv Detail & Related papers (2025-03-09T20:06:45Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - T1: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Preference-Based Multi-Agent Reinforcement Learning (PbMARL)<n>We identify the Nash equilibrium from a preference-only offline dataset in general-sum games.<n>Our findings underscore the multifaceted approach required for PbMARL.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
Reinforcement learning with continuous state and action spaces remains one of the most challenging problems within the field.
We propose the first differential RL framework that can handle settings with limited training samples and short-length episodes.
arXiv Detail & Related papers (2024-04-24T03:11:12Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.