論文の概要: Bottom-Up Synthesis of Knowledge-Grounded Task-Oriented Dialogues with Iteratively Self-Refined Prompts
- arxiv url: http://arxiv.org/abs/2504.14375v1
- Date: Sat, 19 Apr 2025 18:25:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 00:59:57.380385
- Title: Bottom-Up Synthesis of Knowledge-Grounded Task-Oriented Dialogues with Iteratively Self-Refined Prompts
- Title(参考訳): 反復的自己精製プロンプトを用いた知識付きタスク指向対話のボトムアップ合成
- Authors: Kun Qian, Maximillian Chen, Siyan Li, Arpit Sharma, Zhou Yu,
- Abstract要約: ボトムアップな会話合成手法を導入し、まずQAペアを生成し、その後にコヒーレントな対話に結合する。
この構造は、プロプライエタリな知識を含まない段階における非局所モデルの使用を可能にする。
人的・自動的な評価は、我々のアプローチがより現実的で高品質な対話を生み出すことを示している。
- 参考スコア(独自算出の注目度): 19.73376945990922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training conversational question-answering (QA) systems requires a substantial amount of in-domain data, which is often scarce in practice. A common solution to this challenge is to generate synthetic data. Traditional methods typically follow a top-down approach, where a large language model (LLM) generates multi-turn dialogues from a broad prompt. Although this method produces coherent conversations, it offers limited fine-grained control over the content and is susceptible to hallucinations. We introduce a bottom-up conversation synthesis approach, where QA pairs are generated first and then combined into a coherent dialogue. This method offers greater control and precision by dividing the process into two distinct steps, allowing refined instructions and validations to be handled separately. Additionally, this structure allows the use of non-local models in stages that do not involve proprietary knowledge, enhancing the overall quality of the generated data. Both human and automated evaluations demonstrate that our approach produces more realistic and higher-quality dialogues compared to top-down methods.
- Abstract(参考訳): 会話型質問答えシステム(QA)の訓練には大量のドメイン内データが必要であるが、実際は不足していることが多い。
この課題の一般的な解決策は、合成データを生成することである。
従来の手法では、大きな言語モデル(LLM)が広いプロンプトからマルチターン対話を生成するという、トップダウンアプローチが一般的である。
この手法はコヒーレントな会話を生成するが、内容のきめ細かな制御が限定されており、幻覚の影響を受けやすい。
ボトムアップな会話合成手法を導入し、まずQAペアを生成し、その後にコヒーレントな対話に結合する。
この方法では、プロセスを2つの異なるステップに分割することで、より制御と精度が向上し、洗練された命令と検証を別々に扱うことができる。
さらに、この構造により、プロプライエタリな知識を含まない段階で非ローカルモデルを使用することで、生成されたデータの全体的な品質を向上させることができる。
人的評価と自動評価の両方が、トップダウン手法と比較して、我々のアプローチがより現実的で高品質な対話を生み出すことを示している。
関連論文リスト
- Generative Prompt Internalization [48.91617280112579]
本稿では,共同学習手法を用いる軽量な手法であるGenerative Prompt Internalization (GenPI)を提案する。
GenPIは、プロンプト入力でモデルの振る舞いを複製するだけでなく、プロンプトの内容も生成する。
エージェントベースのアプリケーションシナリオにおいて,このアプローチが複雑なプロンプトを効果的に内部化することを示す。
論文 参考訳(メタデータ) (2024-11-24T17:32:20Z) - Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
本稿では,データセットから対話ポリシーを抽出する上で,Large Language Modelがいかに有効かを示す。
そこで我々は,制御可能かつ解釈可能なグラフベースの手法を用いて対話ポリシーを生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:57:25Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - Attribute Controlled Dialogue Prompting [31.09791656949115]
本稿では,対話生成のための新しいインスタンス固有のプロンプトチューニングアルゴリズムを提案する。
本手法はベースラインの促進に優れ,全パラメータの5%~6%の微調整に匹敵する。
論文 参考訳(メタデータ) (2023-07-11T12:48:55Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - GRASP: Guiding model with RelAtional Semantics using Prompt [3.1275060062551208]
本稿では Prompt (GRASP) を用いたRelAtional Semantics を用いた誘導モデルを提案する。
我々は、プロンプトベースの微調整アプローチを採用し、引数を意識したプロンプトマーカー戦略を用いて、ある対話における関係意味的手がかりをキャプチャする。
実験では、DialogREデータセット上でのF1とF1cのスコアの観点から、GRASPの最先端のパフォーマンスが評価された。
論文 参考訳(メタデータ) (2022-08-26T08:19:28Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
現在のニューラルダイアログモデルの制限は、生成された応答における特異性と情報性の欠如に悩まされる傾向があることである。
本稿では,対話履歴と既存の対話モデルから初期応答の両方を条件とした,多様な知識スニペットの集合を検索する,ポストホックな知識注入手法を提案する。
我々は,各検索したスニペットを,勾配に基づく復号法を用いて初期応答に個別に注入し,教師なしランキングステップで最終応答を選択する複数の候補応答を構築する。
論文 参考訳(メタデータ) (2022-03-22T00:42:27Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
本稿では,対話生成問題を素早い学習課題とする,事前学習型対話モデリングのための新しい手法を提案する。
限られた対話データを微調整する代わりに、我々のアプローチであるDialogPromptは、対話コンテキストに最適化された連続的なプロンプト埋め込みを学習する。
提案手法は,微調整ベースラインと汎用的なプロンプト学習法を著しく上回っている。
論文 参考訳(メタデータ) (2021-11-04T05:40:13Z) - Smoothing Dialogue States for Open Conversational Machine Reading [70.83783364292438]
本稿では,2つの対話状態を1つのデコーダとブリッジ決定と質問生成でスムーズにすることで,効果的なゲーティング戦略を提案する。
OR-ShARCデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-08-28T08:04:28Z) - Improving Response Quality with Backward Reasoning in Open-domain
Dialogue Systems [53.160025961101354]
本稿では,バニラエンコーダデコーダトレーニングに後方推論ステップを追加することで,生成モデルを双方向にトレーニングすることを提案する。
提案する後方推論ステップは、モデルがより有益で一貫性のあるコンテンツを生成するように促す。
副次的な情報を導入することなく応答品質を向上させることができる。
論文 参考訳(メタデータ) (2021-04-30T20:38:27Z) - Plug-and-Play Conversational Models [62.77150879036442]
我々はデコード時にさらなる計算を必要としないアプローチを導入し、また大きな言語モデルの微調整も必要としない。
我々は、広範囲な自動的・人的評価を通じて、複数の望ましい属性について、生成した会話応答に対する高い制御を実証する。
論文 参考訳(メタデータ) (2020-10-09T03:17:51Z) - Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired
Data [61.71319905364992]
未ペアデータを利用したオープンドメイン対話モデルのトレーニングのための新しいデータ拡張手法を提案する。
データレベルの蒸留プロセスが最初に提案され、未確認データからポストとレスポンスの両方を検索する拡張ダイアログを構築する。
低品質の対話をフィルタリングするためにランキングモジュールが使用される。
モデルレベルの蒸留プロセスを用いて、高品質なペアデータに基づいて訓練された教師モデルを、強化された対話ペアに蒸留する。
論文 参考訳(メタデータ) (2020-09-20T13:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。