論文の概要: StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models
- arxiv url: http://arxiv.org/abs/2504.14915v1
- Date: Mon, 21 Apr 2025 07:33:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 19:07:53.313368
- Title: StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models
- Title(参考訳): StableQuant: 音声基礎モデルのための層適応後学習量子化
- Authors: Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang,
- Abstract要約: StableQuantは広く使われている音声基礎モデル(SFM)のための適応的後学習量子化アルゴリズムである
本稿では,2つのSFM, HuBERT と wav2vec2.0 を用いて自動音声認識(ASR)タスクの評価を行い,従来の PTQ 手法と比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 15.735282678521186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose StableQuant, a novel adaptive post-training quantization (PTQ) algorithm for widely used speech foundation models (SFMs). While PTQ has been successfully employed for compressing large language models (LLMs) due to its ability to bypass additional fine-tuning, directly applying these techniques to SFMs may not yield optimal results, as SFMs utilize distinct network architecture for feature extraction. StableQuant demonstrates optimal quantization performance regardless of the network architecture type, as it adaptively determines the quantization range for each layer by analyzing both the scale distributions and overall performance. We evaluate our algorithm on two SFMs, HuBERT and wav2vec2.0, for an automatic speech recognition (ASR) task, and achieve superior performance compared to traditional PTQ methods. StableQuant successfully reduces the sizes of SFM models to a quarter and doubles the inference speed while limiting the word error rate (WER) performance drop to less than 0.3% with 8-bit quantization.
- Abstract(参考訳): 本稿では,広く使われている音声基礎モデル(SFM)のための適応後量子化(PTQ)アルゴリズムであるStableQuantを提案する。
PTQは大規模言語モデル(LLM)の圧縮に成功しているが、SFMにこれらの技術を直接適用しても、特徴抽出に異なるネットワークアーキテクチャを利用するため、最適な結果が得られない可能性がある。
ネットワークアーキテクチャの種類にかかわらず、StableQuantは、スケール分布と全体的な性能の両方を分析して各層の量子化範囲を適応的に決定するので、最適な量子化性能を示す。
本稿では,2つのSFM, HuBERT と wav2vec2.0 を用いて自動音声認識(ASR)タスクの評価を行い,従来の PTQ 手法と比較して優れた性能を示した。
StableQuantは、SFMモデルのサイズを4分の1に減らし、ワードエラー率(WER)のパフォーマンスを8ビット量子化で0.3%未満に制限しながら、推論速度を2倍にする。
関連論文リスト
- Precision Neural Network Quantization via Learnable Adaptive Modules [27.323901068182234]
量子化アウェアトレーニング(QAT)は、モデルサイズを圧縮し、運用効率を向上させるニューラルネットワーク量子化技術である。
本稿では、適応ステップサイズ量子化(ASQ)と呼ばれる、効果的な学習可能な適応型ニューラルネットワーク量子化法を提案する。
論文 参考訳(メタデータ) (2025-04-24T05:46:25Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - TQ-DiT: Efficient Time-Aware Quantization for Diffusion Transformers [3.389132862174821]
モデルの量子化は、より低い精度で重みとアクティベーション値を表す。
時間群量子化(TGQ)は、アクティベーションの時間的変動に起因する量子化誤差を低減するために提案される。
提案アルゴリズムは,W8A8でFIDが0.29増加し,元の完全精度モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2025-02-06T13:14:52Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - Designing strong baselines for ternary neural network quantization
through support and mass equalization [7.971065005161565]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンにおける幅広いアプリケーションにおいて、最高のパフォーマンスを提供する。
浮動小数点値を3次値に定量化することにより、この計算負担を劇的に低減することができる。
提案手法は, 様々なシナリオを用いて三次量子化の性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-30T07:35:07Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Towards Robust FastSpeech 2 by Modelling Residual Multimodality [4.4904382374090765]
FastSpeech 2に基づく最先端の非自己回帰型音声合成モデルは、高忠実度と自然な音声を効率的に合成することができる。
表現型音声データセットにおける特徴的音声歪みを観察する。
TVC-GMMはスペクトログラムの滑らかさを低減し、特に表現的データセットの知覚音質を改善する。
論文 参考訳(メタデータ) (2023-06-02T11:03:26Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。