論文の概要: 3D Gaussian Head Avatars with Expressive Dynamic Appearances by Compact Tensorial Representations
- arxiv url: http://arxiv.org/abs/2504.14967v1
- Date: Mon, 21 Apr 2025 08:50:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:49:55.86097
- Title: 3D Gaussian Head Avatars with Expressive Dynamic Appearances by Compact Tensorial Representations
- Title(参考訳): コンパクトなテンソル表現による3次元ガウス型頭部アバターの動的表現
- Authors: Yating Wang, Xuan Wang, Ran Yi, Yanbo Fan, Jichen Hu, Jingcheng Zhu, Lizhuang Ma,
- Abstract要約: 本稿では3次元ガウスのテクスチャ関連属性をテンソル形式でエンコードする表現的かつコンパクトな表現を提案する。
我々は静的な三面体に中性表現の外観を記憶し、軽量な1次元特徴線を用いて異なる表現に対して動的テクスチャの詳細を表現する。
この設計により、リアルタイムレンダリングを維持しながら正確な顔のダイナミックな詳細をキャプチャでき、ストレージコストを大幅に削減できる。
- 参考スコア(独自算出の注目度): 41.303036354495816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have combined 3D Gaussian and 3D Morphable Models (3DMM) to construct high-quality 3D head avatars. In this line of research, existing methods either fail to capture the dynamic textures or incur significant overhead in terms of runtime speed or storage space. To this end, we propose a novel method that addresses all the aforementioned demands. In specific, we introduce an expressive and compact representation that encodes texture-related attributes of the 3D Gaussians in the tensorial format. We store appearance of neutral expression in static tri-planes, and represents dynamic texture details for different expressions using lightweight 1D feature lines, which are then decoded into opacity offset relative to the neutral face. We further propose adaptive truncated opacity penalty and class-balanced sampling to improve generalization across different expressions. Experiments show this design enables accurate face dynamic details capturing while maintains real-time rendering and significantly reduces storage costs, thus broadening the applicability to more scenarios.
- Abstract(参考訳): 最近の研究は、高品質な3Dヘッドアバターを構築するために、3Dガウスモデルと3Dモルファブルモデル(3DMM)を組み合わせている。
この一連の研究において、既存の手法は動的テクスチャのキャプチャに失敗するか、実行速度やストレージスペースの面でかなりのオーバーヘッドを発生させるかのいずれかである。
そこで本研究では,上記のすべての要求に対処する新しい手法を提案する。
具体的には、テンソル形式で3次元ガウスのテクスチャ関連属性を符号化する表現的かつコンパクトな表現を導入する。
我々は静的な三面体に中性表現の外観を記憶し、軽量な1次元特徴線を用いて異なる表現の動的テクスチャの詳細を表現し、中立面に対して不透明なオフセットに復号する。
さらに,適応的不透明度ペナルティとクラスバランスサンプリングを提案し,異なる表現間の一般化を改善する。
この設計は、リアルタイムレンダリングを維持しながら正確な顔のダイナミックな詳細をキャプチャし、ストレージコストを大幅に削減し、より多くのシナリオに適用可能にする。
関連論文リスト
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
既存のNeRFおよび3DGSベースの手法は、フォトリアリスティックレンダリングを実現する上で有望な結果を示すが、スローでシーンごとの最適化が必要である。
本稿では,都市景観を対象とした効率的な3次元ガウススプレイティングモデルEVolSplatを紹介する。
論文 参考訳(メタデータ) (2025-03-26T02:47:27Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
時間圧縮3Dガウススティング(TC3DGS)は動的3Dガウス表現を圧縮する新しい技術である。
複数のデータセットにまたがる実験により、T3DGSは最大67$times$圧縮を実現し、視覚的品質の劣化を最小限に抑えることができた。
論文 参考訳(メタデータ) (2024-12-07T17:03:09Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction [2.022451212187598]
近年,Neural Radiance Fields (NeRF) は3次元の3次元再構成に革命をもたらした。
3D Gaussian Splatting (3D-GS)は、ニューラルネットワークの暗黙の表現から離れ、代わりに、シーンを直接ガウス型の分布を持つ点雲として表現している。
本稿では,高品質な動的シーン再構成のための高精細な3次元ガウス表現を提案する。
実験の結果,提案手法は3D-GSによるメモリ使用量を大幅に削減しつつ,レンダリング品質と高速化の既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-28T07:12:22Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
本稿では,3DGSのボリューム強度とStyleGANの強力な暗黙表現を統合する新しいフレームワークを提案する。
提案手法は, 再現性, 新規なビュー合成, アニメーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-01T18:14:42Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
本研究では,野生で撮影されたモノクロRGBビデオから高品質な3次元頭部アバターを学習する方法を提案する。
我々のハイブリッドパイプラインは、3DMMの幾何学的先行と動的追跡とニューラルラディアンス場を組み合わせることで、きめ細かい制御とフォトリアリズムを実現する。
論文 参考訳(メタデータ) (2023-04-04T01:10:04Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-Aware Generative Adversarial Network (GANs) は, 単一視点2D画像のコレクションのみを用いて, 高忠実かつ多視点の顔画像を合成する。
最近の研究は、3D Morphable Face Model (3DMM) を用いて、生成放射場における変形を明示的または暗黙的に記述している。
本研究では,非構造化2次元画像から生成的,高品質,かつ3D一貫性のある顔アバターの教師なし学習のための新しい3D GANフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T06:40:46Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。