論文の概要: A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2405.17891v1
- Date: Tue, 28 May 2024 07:12:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:57:23.519599
- Title: A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction
- Title(参考訳): 高品位ダイナミックシーン再構築のための3次元ガウス表現法
- Authors: Bin Zhang, Bi Zeng, Zexin Peng,
- Abstract要約: 近年,Neural Radiance Fields (NeRF) は3次元の3次元再構成に革命をもたらした。
3D Gaussian Splatting (3D-GS)は、ニューラルネットワークの暗黙の表現から離れ、代わりに、シーンを直接ガウス型の分布を持つ点雲として表現している。
本稿では,高品質な動的シーン再構成のための高精細な3次元ガウス表現を提案する。
実験の結果,提案手法は3D-GSによるメモリ使用量を大幅に削減しつつ,レンダリング品質と高速化の既存手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 2.022451212187598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Neural Radiance Fields (NeRF) has revolutionized three-dimensional (3D) reconstruction with its implicit representation. Building upon NeRF, 3D Gaussian Splatting (3D-GS) has departed from the implicit representation of neural networks and instead directly represents scenes as point clouds with Gaussian-shaped distributions. While this shift has notably elevated the rendering quality and speed of radiance fields but inevitably led to a significant increase in memory usage. Additionally, effectively rendering dynamic scenes in 3D-GS has emerged as a pressing challenge. To address these concerns, this paper purposes a refined 3D Gaussian representation for high-quality dynamic scene reconstruction. Firstly, we use a deformable multi-layer perceptron (MLP) network to capture the dynamic offset of Gaussian points and express the color features of points through hash encoding and a tiny MLP to reduce storage requirements. Subsequently, we introduce a learnable denoising mask coupled with denoising loss to eliminate noise points from the scene, thereby further compressing 3D Gaussian model. Finally, motion noise of points is mitigated through static constraints and motion consistency constraints. Experimental results demonstrate that our method surpasses existing approaches in rendering quality and speed, while significantly reducing the memory usage associated with 3D-GS, making it highly suitable for various tasks such as novel view synthesis, and dynamic mapping.
- Abstract(参考訳): 近年,Neural Radiance Fields (NeRF) は3次元の3次元再構成に革命をもたらした。
NeRF上に構築された3D Gaussian Splatting (3D-GS)は、ニューラルネットワークの暗黙の表現から脱却し、代わりにガウス型の分布を持つ点雲としてシーンを直接表現している。
このシフトにより、ラディアンスフィールドのレンダリング品質と速度が著しく向上したが、必然的にメモリ使用量が大幅に増加した。
さらに、3D-GSで動的シーンを効果的にレンダリングすることは、プレスの課題として現れている。
これらの問題に対処するため,本稿では,高品質な動的シーン再構成のための3次元ガウス表現を提案する。
まず,変形可能な多層パーセプトロン(MLP)ネットワークを用いてガウス点の動的オフセットを捕捉し,ハッシュ符号化による点の色特徴を表現する。
その後,学習可能なデノナイジングマスクとデノナイジングマスクを導入し,シーンからノイズポイントを除去し,さらに3次元ガウスモデルを圧縮する。
最後に、点の運動ノイズは、静的な制約と運動の整合性制約によって緩和される。
実験の結果,本手法は3D-GSに関連するメモリ使用量を大幅に削減し,新規なビュー合成や動的マッピングといった様々なタスクに非常に適していることがわかった。
関連論文リスト
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
大規模でダイナミックな都市部における新規ビュー合成(NVS)のための効率的なニューラル3Dシーン表現法を提案する。
本研究では,大規模都市にスケールするニューラルネットワークシーン表現である4DGFを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:39Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting [13.653629893660218]
ニューラルレイディアンス場(NeRF)のレンダリング手法の代替として,F3DGS(Facterized 3D Gaussian Splatting)を提案する。
F-3DGSはレンダリング画像に匹敵する品質を維持しながら、ストレージコストを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-27T11:55:49Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
本稿では,3DGSのボリューム強度とStyleGANの強力な暗黙表現を統合する新しいフレームワークを提案する。
提案手法は, 再現性, 新規なビュー合成, アニメーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-01T18:14:42Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z) - GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise [0.0]
本稿では,ガウススプラッティングに基づく3次元コンテンツ生成フレームワークについて紹介する。
3次元生成における多視点一貫性の実現という課題は、モデリングの複雑さと精度を著しく損なう。
論文 参考訳(メタデータ) (2023-11-19T04:26:16Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。