論文の概要: RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
- arxiv url: http://arxiv.org/abs/2502.02054v1
- Date: Tue, 04 Feb 2025 06:42:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:05:19.506000
- Title: RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
- Title(参考訳): RAPID: ビジョンベースのドローンナビゲーションに逆強化学習を用いたロバストとアジャイルプランナ
- Authors: Minwoo Kim, Geunsik Bae, Jinwoo Lee, Woojae Shin, Changseung Kim, Myong-Yol Choi, Heejung Shin, Hyondong Oh,
- Abstract要約: 本稿では,乱雑な環境下でのアジャイルドローン飛行のための学習型ビジュアルプランナを紹介する。
提案したプランナーは、ミリ秒で衝突のないウェイポイントを生成し、ドローンは、異なる知覚、マッピング、計画モジュールを構築することなく、複雑な環境でアジャイルな操作を実行できる。
- 参考スコア(独自算出の注目度): 9.25068777307471
- License:
- Abstract: This paper introduces a learning-based visual planner for agile drone flight in cluttered environments. The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules. Learning-based methods, such as behavior cloning (BC) and reinforcement learning (RL), demonstrate promising performance in visual navigation but still face inherent limitations. BC is susceptible to compounding errors due to limited expert imitation, while RL struggles with reward function design and sample inefficiency. To address these limitations, this paper proposes an inverse reinforcement learning (IRL)-based framework for high-speed visual navigation. By leveraging IRL, it is possible to reduce the number of interactions with simulation environments and improve capability to deal with high-dimensional spaces while preserving the robustness of RL policies. A motion primitive-based path planning algorithm collects an expert dataset with privileged map data from diverse environments, ensuring comprehensive scenario coverage. By leveraging both the acquired expert and learner dataset gathered from the agent's interactions with the simulation environments, a robust reward function and policy are learned across diverse states. While the proposed method is trained in a simulation environment only, it can be directly applied to real-world scenarios without additional training or tuning. The performance of the proposed method is validated in both simulation and real-world environments, including forests and various structures. The trained policy achieves an average speed of 7 m/s and a maximum speed of 8.8 m/s in real flight experiments. To the best of our knowledge, this is the first work to successfully apply an IRL framework for high-speed visual navigation of drones.
- Abstract(参考訳): 本稿では,乱雑な環境下でのアジャイルドローン飛行のための学習型ビジュアルプランナを紹介する。
提案したプランナーは、ミリ秒で衝突のないウェイポイントを生成し、ドローンは、異なる知覚、マッピング、計画モジュールを構築することなく、複雑な環境でアジャイルな操作を実行できる。
行動クローニング(BC)や強化学習(RL)のような学習ベースの手法は、視覚ナビゲーションにおいて有望な性能を示すが、依然として固有の制限に直面している。
BCは、限られた専門家の模倣によってエラーを複雑化する可能性があり、RLは報酬関数の設計とサンプルの非効率に苦慮している。
これらの制約に対処するため,高速ビジュアルナビゲーションのための逆強化学習(IRL)フレームワークを提案する。
IRLを利用することで、RLポリシーの堅牢性を保ちながら、シミュレーション環境との相互作用数を減らし、高次元空間を扱う能力を向上させることができる。
モーションプリミティブベースのパス計画アルゴリズムは、さまざまな環境から特権地図データを含む専門家データセットを収集し、包括的なシナリオカバレッジを保証する。
エージェントとシミュレーション環境とのインタラクションから収集した専門家と学習者の両方のデータセットを活用することで、さまざまな州で堅牢な報酬関数とポリシーが学習される。
提案手法はシミュレーション環境でのみ訓練されるが,追加のトレーニングやチューニングを行うことなく,実世界のシナリオに直接適用することができる。
本手法の有効性を,森林や各種構造物を含む実環境とシミュレーション環境の両方で検証した。
訓練された方針は、実際の飛行実験で平均速度7m/s、最大速度8.8m/sを達成する。
我々の知る限りでは、これはドローンの高速ビジュアルナビゲーションにIRLフレームワークをうまく適用する最初の試みである。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Learning Speed Adaptation for Flight in Clutter [3.8876619768726157]
動物は自分の運動の速度を自分の能力や観察する環境に適応させることを学ぶ。
モバイルロボットはまた、タスクを効率的に達成するための攻撃性と安全性をトレードオフする能力を示す必要がある。
この研究は、未知の、部分的に観測可能な乱雑な環境において、速度適応の能力を持つ飛行車両を養うことを目的としている。
論文 参考訳(メタデータ) (2024-03-07T15:30:54Z) - ReProHRL: Towards Multi-Goal Navigation in the Real World using
Hierarchical Agents [1.3194749469702445]
本稿では、強化学習によって誘導される階層的マルチゴールナビゲーションでタスクを分割する生産階層RL(ReProHRL)について述べる。
また、物体検出装置を前処理のステップとして使用して、マルチゴールナビゲーションを学習し、それを現実世界に転送する。
実世界の実装と概念実証のために,提案手法をフロントカメラを用いたナノドローンCrzyflieに展開する。
論文 参考訳(メタデータ) (2023-08-17T02:23:59Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Learning Perception-Aware Agile Flight in Cluttered Environments [38.59659342532348]
乱雑な環境下での知覚に敏感で最小時間飛行を実現するニューラルネットワークポリシーを学習する手法を提案する。
提案手法は認識と制御を密に結合し,計算速度(10倍高速)と成功率に有意な優位性を示す。
本研究では, クローズドループ制御性能を最大50km/hの速さで実機とハードウェア・イン・ザ・ループシミュレーションを用いて実証する。
論文 参考訳(メタデータ) (2022-10-04T18:18:58Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Motion Planner Augmented Reinforcement Learning for Robot Manipulation
in Obstructed Environments [22.20810568845499]
本稿では,RLエージェントの動作空間を移動プランナの長期計画能力で拡張する動きプランナ拡張RL(MoPA-RL)を提案する。
動作の大きさに基づいて,動作を直接実行し,動作プランナを起動するアプローチを円滑に移行する。
実験により、MoPA-RLは学習効率を高め、より高速な探索をもたらし、より安全なポリシーをもたらすことが示されている。
論文 参考訳(メタデータ) (2020-10-22T17:59:09Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。