Federated Latent Factor Learning for Recovering Wireless Sensor Networks Signal with Privacy-Preserving
- URL: http://arxiv.org/abs/2504.15525v1
- Date: Tue, 22 Apr 2025 02:01:19 GMT
- Title: Federated Latent Factor Learning for Recovering Wireless Sensor Networks Signal with Privacy-Preserving
- Authors: Chengjun Yu, Yixin Ran, Yangyi Xia, Jia Wu, Xiaojing Liu,
- Abstract summary: Wireless Sensor Networks (WSNs) are a cutting-edge domain in the field of intelligent sensing.<n>Due to sensor failures and energy-saving strategies, the collected data often have massive missing data, hindering subsequent analysis and decision-making.<n>This paper innovatively proposes a federated latent factor learning (FLFL) based spatial signal recovery (SSR) model, named FLFL-SSR.<n>Its main idea is two-fold: 1) it designs a sensor-level federated learning framework, where each sensor uploads only updates instead of raw data to optimize the global model, and 2) it proposes a local spatial sharing strategy, allowing
- Score: 8.06377330950344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless Sensor Networks (WSNs) are a cutting-edge domain in the field of intelligent sensing. Due to sensor failures and energy-saving strategies, the collected data often have massive missing data, hindering subsequent analysis and decision-making. Although Latent Factor Learning (LFL) has been proven effective in recovering missing data, it fails to sufficiently consider data privacy protection. To address this issue, this paper innovatively proposes a federated latent factor learning (FLFL) based spatial signal recovery (SSR) model, named FLFL-SSR. Its main idea is two-fold: 1) it designs a sensor-level federated learning framework, where each sensor uploads only gradient updates instead of raw data to optimize the global model, and 2) it proposes a local spatial sharing strategy, allowing sensors within the same spatial region to share their latent feature vectors, capturing spatial correlations and enhancing recovery accuracy. Experimental results on two real-world WSNs datasets demonstrate that the proposed model outperforms existing federated methods in terms of recovery performance.
Related papers
- Denoising and Adaptive Online Vertical Federated Learning for Sequential Multi-Sensor Data in Industrial Internet of Things [22.208830538149606]
This study focuses on an industrial assembly line scenario where multiple sensors sequentially collect real-time data.<n>We propose the Denoising and Adaptive Online Vertical Federated Learning (DAO-VFL) algorithm.
arXiv Detail & Related papers (2025-01-03T08:22:15Z) - DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data [9.531834233076934]
We propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively.
In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets.
arXiv Detail & Related papers (2024-03-29T06:24:07Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
We tackle the task of estimating the 6D pose of an object from point cloud data.
Recent learning-based approaches to addressing this task have shown great success on synthetic datasets.
We analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds.
arXiv Detail & Related papers (2022-03-29T07:55:04Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Efficient Ring-topology Decentralized Federated Learning with Deep
Generative Models for Industrial Artificial Intelligent [13.982904025739606]
We propose a ring-topogy based decentralized federated learning scheme for Deep Generative Models (DGMs)
Our RDFL schemes provides communication efficiency and maintain training performance to boost DGMs in target IIoT tasks.
In addition, InterPlanetary File System(IPFS) is introduced to further improve communication efficiency and FL security.
arXiv Detail & Related papers (2021-04-15T08:09:54Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.