論文の概要: Riemannian Neural Geodesic Interpolant
- arxiv url: http://arxiv.org/abs/2504.15736v1
- Date: Tue, 22 Apr 2025 09:28:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 21:13:57.56328
- Title: Riemannian Neural Geodesic Interpolant
- Title(参考訳): リーマン型ニューラル測地補間器
- Authors: Jiawen Wu, Bingguang Chen, Yuyi Zhou, Qi Meng, Rongchan Zhu, Zhi-Ming Ma,
- Abstract要約: 微分補間子は、2つの任意の確率密度関数を有限時間でブリッジする効率的な生成モデルである。
これらのモデルは主にユークリッド空間で開発されており、多くの分布学習問題への応用に限られている。
2つの確率密度の間を補間するリーマン測地補間(RNGI)モデルを導入する。
- 参考スコア(独自算出の注目度): 15.653104625330062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic interpolants are efficient generative models that bridge two arbitrary probability density functions in finite time, enabling flexible generation from the source to the target distribution or vice versa. These models are primarily developed in Euclidean space, and are therefore limited in their application to many distribution learning problems defined on Riemannian manifolds in real-world scenarios. In this work, we introduce the Riemannian Neural Geodesic Interpolant (RNGI) model, which interpolates between two probability densities on a Riemannian manifold along the stochastic geodesics, and then samples from one endpoint as the final state using the continuous flow originating from the other endpoint. We prove that the temporal marginal density of RNGI solves a transport equation on the Riemannian manifold. After training the model's the neural velocity and score fields, we propose the Embedding Stochastic Differential Equation (E-SDE) algorithm for stochastic sampling of RNGI. E-SDE significantly improves the sampling quality by reducing the accumulated error caused by the excessive intrinsic discretization of Riemannian Brownian motion in the classical Geodesic Random Walk (GRW) algorithm. We also provide theoretical bounds on the generative bias measured in terms of KL-divergence. Finally, we demonstrate the effectiveness of the proposed RNGI and E-SDE through experiments conducted on both collected and synthetic distributions on S2 and SO(3).
- Abstract(参考訳): 確率補間子は、2つの任意の確率密度関数を有限時間でブリッジし、ソースからターゲット分布へのフレキシブルな生成を可能にする効率的な生成モデルである。
これらのモデルは、主にユークリッド空間で開発され、したがって実世界のシナリオにおいてリーマン多様体上で定義される多くの分布学習問題への応用に制限される。
本研究では,リーマン多様体上の2つの確率密度を確率的測地線に沿って補間するリーマン型ニューラルジオデシック補間法(RNGI)モデルを導入し,一方の終点からのサンプルを他方の終点からの連続流れを用いて最終状態とする。
RNGI の時間境界密度はリーマン多様体上の輸送方程式を解くことを証明している。
モデルのニューラルネットワーク速度とスコアフィールドをトレーニングした後、RNGIの確率的サンプリングのための埋め込み確率微分方程式(E-SDE)アルゴリズムを提案する。
E-SDEは、古典的測地ランダムウォーク(GRW)アルゴリズムにおいて、リーマン・ブラウン運動の過度な内在的離散化に起因する累積誤差を低減し、サンプリング品質を著しく改善する。
また、KL偏差の点で測定された生成バイアスに関する理論的境界も提供する。
最後に, RNGIおよびE-SDEの有効性を, S2およびSO(3)の収集および合成の両方の実験により実証した。
関連論文リスト
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
低次元の潜伏空間にPDE状態を埋め込んだPDEシミュレーションのための潜伏拡散モデルを提案する。
我々のフレームワークは、オートエンコーダを使用して、異なるタイプのメッシュを統一された構造化潜在グリッドにマッピングし、複雑なジオメトリをキャプチャします。
数値実験により,提案モデルは,精度と長期安定性の両方において,決定論的ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-03-28T16:44:28Z) - Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space [17.13355049019388]
我々はワッサーシュタイン空間上の勾配流を勾配降下流(SGD)と分散還元流(SVRG)に拡張する。
ワッサーシュタイン空間の性質を利用して、ユークリッド空間における対応する離散力学を近似するために微分方程式を構築する。
この結果はユークリッド空間における結果と一致することが証明されている。
論文 参考訳(メタデータ) (2024-01-24T15:35:44Z) - Noise in the reverse process improves the approximation capabilities of
diffusion models [27.65800389807353]
生成モデリングにおける最先端技術であるスコアベース生成モデリング(SGM)では、リバースプロセスは決定論的手法よりも優れた性能を発揮することが知られている。
本稿では,ニューラル常微分方程式 (ODE) とニューラルディメンション方程式 (SDE) を逆過程として比較し,この現象の核となる。
我々は、Fokker-Planck方程式の軌跡を近似するニューラルSDEの能力を解析し、ニューラルティの利点を明らかにする。
論文 参考訳(メタデータ) (2023-12-13T02:39:10Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation [2.365116842280503]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。