Quantum machine learning advantages beyond hardness of evaluation
- URL: http://arxiv.org/abs/2504.15964v1
- Date: Tue, 22 Apr 2025 15:04:46 GMT
- Title: Quantum machine learning advantages beyond hardness of evaluation
- Authors: Riccardo Molteni, Simon C. Marshall, Vedran Dunjko,
- Abstract summary: Most general examples of quantum learning advantages involve data labeled by cryptographic or quantum functions.<n>For quantum functions, random-generatability is conjectured not to hold, leaving no known identification advantages in genuinely quantum regimes.<n>We show that verifiable identification is hard for quantum labeling functions unless BQP is in the hierarchy.
- Score: 1.9662978733004604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most general examples of quantum learning advantages involve data labeled by cryptographic or intrinsically quantum functions, where classical learners are limited by the infeasibility of evaluating the labeling functions using polynomial-sized classical circuits. While broad in scope, such results reveal little about advantages arising from the learning process itself. In cryptographic settings, further insight is possible via random-generatability - the ability to classically generate labeled data - enabling hardness proofs for identification tasks, where the goal is to identify the labeling function from a dataset, even when evaluation is classically intractable. These tasks are particularly relevant in quantum contexts, including Hamiltonian learning and identifying physically meaningful order parameters. However, for quantum functions, random-generatability is conjectured not to hold, leaving no known identification advantages in genuinely quantum regimes. In this work, we give the first proofs of quantum identification learning advantages under standard complexity assumptions. We confirm that quantum-hard functions are not random-generatable unless BQP is contained in the second level of the polynomial hierarchy, ruling out cryptographic-style data generation strategies. We then introduce a new approach: we show that verifiable identification - solving the identification task for valid datasets while rejecting invalid ones - is classically hard for quantum labeling functions unless BQP is in the polynomial hierarchy. Finally, we show that, for a broad class of tasks, solving the identification problem implies verifiable identification in the polynomial hierarchy. This yields our main result: a natural class of quantum identification tasks solvable by quantum learners but hard for classical learners unless BQP is in the polynomial hierarchy.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
This article reviews the complexity of quantum learning using information-theoretic techniques.
We focus on data complexity, copy complexity, and model complexity.
We highlight the differences between quantum and classical learning by addressing both supervised and unsupervised learning.
arXiv Detail & Related papers (2023-09-20T20:04:05Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Exponential separations between classical and quantum learners [2.209921757303168]
We discuss how subtle differences in definitions can result in significantly different requirements and tasks for the learner to meet and solve.
We present two new learning separations where the classical difficulty primarily lies in identifying the function generating the data.
arXiv Detail & Related papers (2023-06-28T08:55:56Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
In this paper, we establish a rigorous quantum speed-up for supervised classification using a general-purpose quantum learning algorithm.
Our quantum classifier is a conventional support vector machine that uses a fault-tolerant quantum computer to estimate a kernel function.
arXiv Detail & Related papers (2020-10-05T17:22:22Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.