How Private is Your Attention? Bridging Privacy with In-Context Learning
- URL: http://arxiv.org/abs/2504.16000v1
- Date: Tue, 22 Apr 2025 16:05:26 GMT
- Title: How Private is Your Attention? Bridging Privacy with In-Context Learning
- Authors: Soham Bonnerjee, Zhen Wei, Yeon, Anna Asch, Sagnik Nandy, Promit Ghosal,
- Abstract summary: In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models.<n>We propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression.
- Score: 4.093582834469802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
Related papers
- Forward Learning with Differential Privacy [27.164507868291913]
We propose a blueprivatized forward-learning algorithm, Differential Private Unified Likelihood Ratio (DP-ULR)<n>Our experiments indicate that DP-ULR achieves competitive performance compared to traditional differential privacy training algorithms based on backpropagation.
arXiv Detail & Related papers (2025-04-01T04:14:53Z) - In-Context Linear Regression Demystified: Training Dynamics and Mechanistic Interpretability of Multi-Head Softmax Attention [52.159541540613915]
We study how multi-head softmax attention models are trained to perform in-context learning on linear data.<n>Our results reveal that in-context learning ability emerges from the trained transformer as an aggregated effect of its architecture and the underlying data distribution.
arXiv Detail & Related papers (2025-03-17T02:00:49Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.<n>We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - A Unified Learn-to-Distort-Data Framework for Privacy-Utility Trade-off in Trustworthy Federated Learning [5.622065847054885]
We present the textitLearn-to-Distort-Data framework, which provides a principled approach to navigate the privacy-utility equilibrium.
We demonstrate the applicability of our framework to a variety of privacy-preserving mechanisms on the basis of data distortion.
arXiv Detail & Related papers (2024-07-05T08:15:09Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - Safeguarding Data in Multimodal AI: A Differentially Private Approach to
CLIP Training [15.928338716118697]
We introduce a differentially private adaptation of the Contrastive Language-Image Pretraining (CLIP) model.
Our proposed method, Dp-CLIP, is rigorously evaluated on benchmark datasets.
arXiv Detail & Related papers (2023-06-13T23:32:09Z) - An Information-Theoretic Perspective on Variance-Invariance-Covariance Regularization [52.44068740462729]
We present an information-theoretic perspective on the VICReg objective.
We derive a generalization bound for VICReg, revealing its inherent advantages for downstream tasks.
We introduce a family of SSL methods derived from information-theoretic principles that outperform existing SSL techniques.
arXiv Detail & Related papers (2023-03-01T16:36:25Z) - One-shot Empirical Privacy Estimation for Federated Learning [43.317478030880956]
"One-shot" approach allows efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters.
We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism.
arXiv Detail & Related papers (2023-02-06T19:58:28Z) - Semantic Self-adaptation: Enhancing Generalization with a Single Sample [45.111358665370524]
We propose a self-adaptive approach for semantic segmentation.
It fine-tunes the parameters of convolutional layers to the input image using consistency regularization.
Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time.
arXiv Detail & Related papers (2022-08-10T12:29:01Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
Deep learning to inputs perturbations has raised serious questions about its use in safety-critical domains.
We propose a hybrid Langevin Monte Carlo training approach to mitigate this issue.
We show that our approach can mitigate the trade-off between state-of-the-art performance and robust robustness.
arXiv Detail & Related papers (2021-10-29T13:30:42Z) - Tempered Sigmoid Activations for Deep Learning with Differential Privacy [33.574715000662316]
We show that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning.
We achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals.
arXiv Detail & Related papers (2020-07-28T13:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.