論文の概要: Classification of Firn Data via Topological Features
- arxiv url: http://arxiv.org/abs/2504.16150v1
- Date: Tue, 22 Apr 2025 14:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.875676
- Title: Classification of Firn Data via Topological Features
- Title(参考訳): 地形的特徴によるファーンデータの分類
- Authors: Sarah Day, Jesse Dimino, Matt Jester, Kaitlin Keegan, Thomas Weighill,
- Abstract要約: ファーン画像データの一般化およびロバスト分類のためのトポロジ的特徴量の評価を行った。
ファーン(Firn)とは、氷河の中で氷に圧縮されていない粒状雪の層を指す。
- 参考スコア(独自算出の注目度): 2.3592914313389253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we evaluate the performance of topological features for generalizable and robust classification of firn image data, with the broader goal of understanding the advantages, pitfalls, and trade-offs in topological featurization. Firn refers to layers of granular snow within glaciers that haven't been compressed into ice. This compactification process imposes distinct topological and geometric structure on firn that varies with depth within the firn column, making topological data analysis (TDA) a natural choice for understanding the connection between depth and structure. We use two classes of topological features, sublevel set features and distance transform features, together with persistence curves, to predict sample depth from microCT images. A range of challenging training-test scenarios reveals that no one choice of method dominates in all categories, and uncoveres a web of trade-offs between accuracy, interpretability, and generalizability.
- Abstract(参考訳): 本稿では,画像データの一般化可能な,堅牢な分類のためのトポロジ的特徴の評価を行い,トポロジ的デマチュアライゼーションにおける利点,落とし穴,トレードオフを理解することを目的とした。
ファーン(Firn)とは、氷河の中で氷に圧縮されていない粒状雪の層を指す。
このコンパクト化プロセスは、ファーンカラム内の深さによって異なるファーンに異なる位相的および幾何学的構造を課し、トポロジカルデータ解析(TDA)は深さと構造の間の関係を理解するための自然な選択である。
我々は、マイクロCT画像からサンプル深度を予測するために、サブレベルセット特徴と距離変換特徴の2つのクラスを用いる。
難易度の高いトレーニングテストシナリオでは、すべてのカテゴリでメソッドの選択がひとつも支配されておらず、正確性、解釈可能性、一般化可能性の間のトレードオフの網を明らかにする。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Point-Level Topological Representation Learning on Point Clouds [5.079602839359521]
複素点雲からノードレベルの位相的特徴を抽出する新しい手法を提案する。
我々は,これらのトポロジ的特徴が合成データと実世界のデータの両方に与える影響を検証する。
論文 参考訳(メタデータ) (2024-06-04T13:29:12Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Image Classification using Combination of Topological Features and
Neural Networks [1.0323063834827417]
我々は、データ空間から重要なトポロジ的特徴を抽出するために、永続的ホモロジー法、すなわち、トポロジ的データ解析(TDA)の技法を用いる。
これは、MNISTデータセット内の複数のクラスから画像を分類することを目的として行われた。
提案手法は,1ストリームと2ストリームのニューラルネットワークによって構成されるディープラーニングアプローチにトポロジ的特徴を挿入する。
論文 参考訳(メタデータ) (2023-11-10T20:05:40Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
まず、3層ニューラルネットワークがコンパクトな集合上のインジケータ関数を近似するように設計可能であることを示す。
その後、これは単純複体へと拡張され、その位相構造に基づいて幅の上界が導かれる。
トポロジカルアプローチを用いて3層ReLUネットワークの普遍近似特性を証明した。
論文 参考訳(メタデータ) (2023-05-25T14:17:15Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
本稿では,様々な訓練シナリオにおける画像分類におけるトポロジ的特性の有効性を詳細に分析する。
例えば、小さなデータセット上で単純なネットワークをトレーニングするなど、トポロジ的特徴から最も恩恵を受けるシナリオを特定します。
論文 参考訳(メタデータ) (2022-07-09T08:01:11Z) - Bending Graphs: Hierarchical Shape Matching using Gated Optimal
Transport [80.64516377977183]
形状マッチングは、コンピュータグラフィックスと視覚のコミュニティにとって長い間研究されてきた問題である。
局所的なパッチレベル情報とグローバルな形状レベルの構造を組み込んだ階層型学習設計について検討する。
本研究では,非信頼ノード上の特徴を逐次更新し,形状間の一貫した一致を学習することで,新しい最適輸送解法を提案する。
論文 参考訳(メタデータ) (2022-02-03T11:41:46Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
深部画像セグメンテーションネットワークを訓練し、位相精度を向上させる新しい手法を提案する。
1次元骨格や2次元パッチなど,位相的精度に重要なグローバル構造を明らかにする。
多様なデータセットに対して,DICEスコアとトポロジカルメトリクスの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-18T02:47:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - PLLay: Efficient Topological Layer based on Persistence Landscapes [24.222495922671442]
PLLayは、永続化ランドスケープに基づいた一般的なディープラーニングモデルのための新しいトポロジ的レイヤである。
任意の濾過を伴う一般的な永続ホモロジーに対して、層入力に関する微分可能性を示す。
論文 参考訳(メタデータ) (2020-02-07T13:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。