論文の概要: QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimization Algorithm Circuits
- arxiv url: http://arxiv.org/abs/2504.16350v1
- Date: Wed, 23 Apr 2025 02:00:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.96868
- Title: QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimization Algorithm Circuits
- Title(参考訳): QAOA-GPT:適応型および正規型量子近似最適化回路の効率的な生成
- Authors: Ilya Tyagin, Marwa H. Farag, Kyle Sherbert, Karunya Shirali, Yuri Alexeev, Ilya Safro,
- Abstract要約: 本稿では、GPT(Generative Pretrained Transformer)を利用して量子回路を直接合成し、制約のないバイナリ最適化問題を解決するための生成フレームワークであるQAOA-GPTを紹介する。
トレーニング回路の多様化と品質確保のために,適応型QAOAアプローチを用いた合成データセットを作成した。
その結果,量子回路生成にQAOA-GPTを用いると,古典的QAOAの計算オーバーヘッドと適応的アプローチの両方が大幅に減少することがわかった。
- 参考スコア(独自算出の注目度): 1.5739024454537747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum computing has the potential to improve our ability to solve certain optimization problems that are computationally difficult for classical computers, by offering new algorithmic approaches that may provide speedups under specific conditions. In this work, we introduce QAOA-GPT, a generative framework that leverages Generative Pretrained Transformers (GPT) to directly synthesize quantum circuits for solving quadratic unconstrained binary optimization problems, and demonstrate it on the MaxCut problem on graphs. To diversify the training circuits and ensure their quality, we have generated a synthetic dataset using the adaptive QAOA approach, a method that incrementally builds and optimizes problem-specific circuits. The experiments conducted on a curated set of graph instances demonstrate that QAOA-GPT, generates high quality quantum circuits for new problem instances unseen in the training as well as successfully parametrizes QAOA. Our results show that using QAOA-GPT to generate quantum circuits will significantly decrease both the computational overhead of classical QAOA and adaptive approaches that often use gradient evaluation to generate the circuit and the classical optimization of the circuit parameters. Our work shows that generative AI could be a promising avenue to generate compact quantum circuits in a scalable way.
- Abstract(参考訳): 量子コンピューティングは、特定の条件下でのスピードアップを提供する新しいアルゴリズムアプローチを提供することによって、古典的コンピュータにとって計算が難しい特定の最適化問題を解く能力を向上させる可能性がある。
本稿では、生成事前学習変換(GPT)を利用する生成フレームワークであるQAOA-GPTを導入し、量子回路を直接合成して2次非制約バイナリ最適化問題を解き、グラフ上のMaxCut問題でそれを実証する。
トレーニング回路の多様化と品質確保のために,適応型QAOAアプローチを用いて,問題固有の回路を段階的に構築・最適化する合成データセットを作成した。
グラフインスタンスのキュレートしたセットで行われた実験により、QAOA-GPTはトレーニングで見つからない新しい問題インスタンスのための高品質な量子回路を生成し、QAOAをパラメトリズすることに成功した。
その結果、量子回路生成にQAOA-GPTを用いることで、古典的QAOAの計算オーバーヘッドと、回路パラメータの生成に勾配評価を用いる適応的アプローチの両方を著しく削減できることがわかった。
我々の研究は、生成型AIが、スケーラブルな方法でコンパクトな量子回路を生成するための有望な道であることを示している。
関連論文リスト
- Quantum algorithms for the variational optimization of correlated electronic states with stochastic reconfiguration and the linear method [0.0]
本稿では、ユニタリ作用素の積に相関した波動関数の変動最適化のための量子アルゴリズムを提案する。
古典的なコンピューティングハードウェアの実装には、指数関数的に計算コストが増加する必要があるが、量子アルゴリズムのコスト(回路数とショット数)はシステムサイズである。
論文 参考訳(メタデータ) (2024-08-03T17:53:35Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Quantum Circuit Unoptimization [0.6449786007855248]
我々は、量子回路最適化と呼ばれる量子アルゴリズムプリミティブを構築する。
回路等価性を保ちながらいくつかの冗長性を導入することで、与えられた量子回路複合体を作る。
我々は、量子回路の最適化を用いて、コンパイラベンチマークを生成し、回路最適化性能を評価する。
論文 参考訳(メタデータ) (2023-11-07T08:38:18Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
制約付き最適化問題を解くためのフェルミオン量子近似最適化アルゴリズム(FQAOA)を提案する。
FQAOAは、フェルミオン粒子数保存を用いて、QAOAを通して本質的にそれらを強制する制約問題に対処する。
制約付きハミルトニアン問題に対して、運転者ハミルトニアンを設計するための体系的なガイドラインを提供する。
論文 参考訳(メタデータ) (2023-01-25T18:36:58Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価コストハミルトニアンに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
我々は、このアイデアをトラベリングセールスマン問題やMax-K$-Cutといった最適化タスクに活用し、関連するすべてのコスト対策に関して最適に近い回路を得る。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
本稿では,量子コンピュータ上での2次線形反復問題を解くために,フランク・ウルフアルゴリズム(Q-FW)に基づく古典量子ハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-23T18:00:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。