論文の概要: ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2504.16394v1
- Date: Wed, 23 Apr 2025 03:42:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.989761
- Title: ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
- Title(参考訳): ConTextual:文脈保存型トークンフィルタリングと知識グラフによるLCMのテキスト要約の改善
- Authors: Fahmida Liza Piya, Rahmatollah Beheshti,
- Abstract要約: ConTextualは、Context-Preserving Token FilteringメソッドとDomain-Specific Knowledge Graphを統合する新しいフレームワークである。
文脈固有の重要なトークンを保存し、構造化された知識でそれらを豊かにすることで、ConTextualは言語的コヒーレンスと臨床的忠実さの両方を改善します。
- 参考スコア(独自算出の注目度): 1.519321208145928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
- Abstract(参考訳): 構造化されていない臨床データは、臨床の実践を有意義に伝えることのできる、ユニークで豊富な情報源として機能する。
このようなデータから最も適切なコンテキストを抽出することは、患者ケアにおける最適かつタイムリーな意思決定への真の可能性を活用する上で重要である。
先行研究は、臨床テキスト要約のための様々な方法を模索してきたが、ほとんどの先行研究は、全ての入力トークンを均一に処理するか、ヒューリスティックベースのフィルタに依存している。
本研究では、コンテキスト保存トークンフィルタリング手法とコンテキスト拡張のためのドメイン特化知識グラフ(KG)を統合する新しいフレームワークであるContextualを提案する。
文脈固有の重要なトークンを保存し、構造化された知識でそれらを豊かにすることで、ConTextualは言語的コヒーレンスと臨床的忠実さの両方を改善します。
2つの公開ベンチマークデータセットに対する広範な実証評価は、ConTextualが他のベースラインを一貫して上回っていることを示している。
提案手法は, 言語的・臨床的整合性の向上におけるトークンレベルのフィルタリングと構造化検索の相補的役割を強調し, クリニカルテキスト生成における精度向上のためのスケーラブルなソリューションを提供する。
関連論文リスト
- Systematic Literature Review on Clinical Trial Eligibility Matching [0.24554686192257422]
レビューでは、説明可能なAIと標準化されたオントロジーがクリニックの信頼を高め、採用を広げる方法が強調されている。
臨床治験採用におけるNLPの変革的ポテンシャルを十分に実現するためには、高度な意味的および時間的表現、拡張されたデータ統合、厳密な予測的評価のさらなる研究が必要である。
論文 参考訳(メタデータ) (2025-03-02T11:45:50Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - A Practical Approach towards Causality Mining in Clinical Text using
Active Transfer Learning [2.6125458645126907]
因果関係マイニングは、最先端の自然言語処理技術の応用を必要とする活発な研究領域である。
この研究は、臨床テキストを因果知識に変換するフレームワークを作成することを目的としている。
論文 参考訳(メタデータ) (2020-12-10T06:51:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - Clinical Text Summarization with Syntax-Based Negation and Semantic
Concept Identification [22.556855536939878]
我々は、人間の専門家によるバイオメディカル知識ベースを用いた計算言語学を用いて、解釈可能かつ有意義な臨床テキスト要約を実現する。
本研究の目的は, バイオメディカルオントロジーを意味情報と共に利用し, 言語階層構造, 選挙区木を活かして, 正しい臨床概念とそれに対応する否定情報を同定することである。
論文 参考訳(メタデータ) (2020-02-29T22:15:15Z) - Knowledge-guided Text Structuring in Clinical Trials [0.38073142980733]
本稿では,知識ベースを自動生成する知識誘導型テキスト構造化フレームワークを提案する。
実験結果から,本手法は全体の高精度化とリコールが可能であることが示唆された。
論文 参考訳(メタデータ) (2019-12-28T01:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。