Qubit Geometry through Holomorphic Quantization
- URL: http://arxiv.org/abs/2504.16426v1
- Date: Wed, 23 Apr 2025 05:24:43 GMT
- Title: Qubit Geometry through Holomorphic Quantization
- Authors: Ahmad Hazazi Ahmad Sumadi, Nurisya Mohd Shah, Umair Abdul Halim, Hishamuddin Zainuddin,
- Abstract summary: We develop a wave mechanics formalism for qubit geometry using holomorphic functions and Mobius transformations.<n>This framework extends the standard Hilbert space description.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a wave mechanics formalism for qubit geometry using holomorphic functions and Mobius transformations, providing a geometric perspective on quantum computation. This framework extends the standard Hilbert space description, offering a natural interpretation of standard quantum gates on the Riemann sphere that is examined through their Mobius action on holomorphic wavefunction. These wavefunctions emerge via a quantization process, with the Riemann sphere serving as the classical phase space of qubit geometry. We quantize this space using canonical group quantization with holomorphic polarization, yielding holomorphic wavefunctions and spin angular momentum operators that recover the standard $SU(2)$ algebra with interesting geometric properties. Such properties reveal how geometric transformations induce quantum logic gates on the Riemann sphere, providing a novel perspective in quantum information processing. This result provides a new direction for exploring quantum computation through Isham's canonical group quantization and its holomorphic polarization method.
Related papers
- Quantum geometric tensors from sub-bundle geometry [0.0]
We use the differential-geometric framework of vector bundles to analyze the properties of parameter-dependent quantum states.<n>We show that the sub-bundle geometry is similar to that of submanifolds in Riemannian geometry and is described by a generalization of the Gauss-Codazzi-Mainardi equations.<n>This leads to a novel definition of the quantum geometric tensor, which contains an additional curvature contribution.
arXiv Detail & Related papers (2025-03-21T14:08:06Z) - Gauge-invariant projector calculus for quantum state geometry and applications to observables in crystals [44.99833362998488]
More complex aspects of geometry emerge in properties linking multiple bands, such as optical responses.<n>We identify novel multi-state geometrical invariants using an explicitly gauge-invariant formalism based on projection operators.<n>We provide more detail on the projector formalism and the geometrical invariants arising in the vicinity of a specific value of crystal momentum.
arXiv Detail & Related papers (2024-12-04T19:00:00Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Generating Quantum Matrix Geometry from Gauged Quantum Mechanics [0.0]
We present a quantum-oriented non-commutative scheme for generating the matrix geometry of the coset space $G/H$.
The resultant matrix geometries manifest as $itpure$ quantum Nambu geometries.
We demonstrate how these quantum Nambu geometries give rise to novel solutions in Yang-Mills matrix models.
arXiv Detail & Related papers (2023-10-02T09:59:18Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Pointillisme \`a la Signac and Construction of a Pseudo Quantum Phase
Space [0.0]
We construct a quantum-mechanical substitute for the symplectic phase space.
The total space of this fiber bundle consists of geometric quantum states.
We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets.
arXiv Detail & Related papers (2022-07-31T16:43:06Z) - Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole [0.0]
We consider the problem of quantizing a particle on a 2-sphere.
We construct the Hilbert space directly from the symmetry algebra.
We show how the Casimir invariants of the algebra determine the bundle topology.
arXiv Detail & Related papers (2020-11-10T04:42:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.