An Interpretable Machine Learning Model with Deep Learning-based Imaging
Biomarkers for Diagnosis of Alzheimer's Disease
- URL: http://arxiv.org/abs/2308.07778v1
- Date: Tue, 15 Aug 2023 13:54:50 GMT
- Title: An Interpretable Machine Learning Model with Deep Learning-based Imaging
Biomarkers for Diagnosis of Alzheimer's Disease
- Authors: Wenjie Kang, Bo Li, Janne M. Papma, Lize C. Jiskoot, Peter Paul De
Deyn, Geert Jan Biessels, Jurgen A.H. R. Claassen, Huub A.M. Middelkoop,
Wiesje M. van der Flier, Inez H.G.B. Ramakers, Stefan Klein, Esther E. Bron
- Abstract summary: We propose a framework that combines the strength of EBM with high-dimensional imaging data using deep learning-based feature extraction.
The proposed framework significantly outperformed an EBM model using volume biomarkers instead of deep learning-based features.
- Score: 4.304406827494684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods have shown large potential for the automatic early
diagnosis of Alzheimer's Disease (AD). However, some machine learning methods
based on imaging data have poor interpretability because it is usually unclear
how they make their decisions. Explainable Boosting Machines (EBMs) are
interpretable machine learning models based on the statistical framework of
generalized additive modeling, but have so far only been used for tabular data.
Therefore, we propose a framework that combines the strength of EBM with
high-dimensional imaging data using deep learning-based feature extraction. The
proposed framework is interpretable because it provides the importance of each
feature. We validated the proposed framework on the Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset, achieving accuracy of 0.883 and
area-under-the-curve (AUC) of 0.970 on AD and control classification.
Furthermore, we validated the proposed framework on an external testing set,
achieving accuracy of 0.778 and AUC of 0.887 on AD and subjective cognitive
decline (SCD) classification. The proposed framework significantly outperformed
an EBM model using volume biomarkers instead of deep learning-based features,
as well as an end-to-end convolutional neural network (CNN) with optimized
architecture.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs.
Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder.
In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data.
arXiv Detail & Related papers (2024-05-20T15:44:07Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
We introduce the Ensemble-Based Federated Learning (EBFL) Framework.
EBFL framework deviates from the conventional approach by emphasizing model features over sharing sensitive patient data.
We have achieved remarkable precision in the classification of brain tumors, including glioma, meningioma, pituitary, and non-tumor instances.
arXiv Detail & Related papers (2024-03-14T19:51:18Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.