論文の概要: Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2504.17561v1
- Date: Thu, 24 Apr 2025 13:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.391531
- Title: Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms
- Title(参考訳): ハイブリッド進化アルゴリズムによる量子回路の構成と最適化
- Authors: Leo Sünkel, Philipp Altmann, Michael Kölle, Gerhard Stenzel, Thomas Gabor, Claudia Linnhoff-Popien,
- Abstract要約: 量子コンピューティングにおける回路の深さを最小化するために,ハイブリッド進化アルゴリズムを適用した。
回路深さの異なる4および6量子ビットのランダム回路上で実験を行う。
提案手法は,目標状態に対して高い忠実性を維持しつつ,回路の深さを大幅に低減できることを示す。
- 参考スコア(独自算出の注目度): 6.869330209162395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply a hybrid evolutionary algorithm to minimize the depth of circuits in quantum computing. More specifically, we evaluate two different variants of the algorithm. In the first approach, we combine the evolutionary algorithm with an optimization subroutine to optimize the parameters of the rotation gates present in the quantum circuit. In the second, the algorithm solely relies on evolutionary operations (i.e., mutations and crossover). We approach the problem from two sides: (1) constructing circuits from the ground up by starting with random initializations and (2) initializing individuals with a target circuit in order to optimize it further according to the fitness function. We run experiments on random circuits with 4 and 6 qubits varying in circuit depth. Our results show that the proposed methods are able to significantly reduce the depth of circuits while still retaining a high fidelity to the target state.
- Abstract(参考訳): 量子コンピューティングにおける回路の深さを最小化するために,ハイブリッド進化アルゴリズムを適用した。
より具体的には、アルゴリズムの2つの異なる変種を評価する。
最初のアプローチでは、進化的アルゴリズムと最適化サブルーチンを組み合わせて、量子回路に存在する回転ゲートのパラメータを最適化する。
第二に、アルゴリズムは進化的操作(つまり突然変異と交叉)にのみ依存する。
本研究では,(1)ランダムな初期化から始めて地上から回路を構築すること,(2)目標回路で個人を初期化することにより,適合度関数に従ってさらに最適化すること,の2つの側面からこの問題にアプローチする。
回路深さの異なる4および6量子ビットのランダム回路上で実験を行う。
提案手法は,目標状態に対して高い忠実性を維持しつつ,回路の深さを大幅に低減できることを示す。
関連論文リスト
- Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
本稿では,LCU演算子の線形結合として表現できる演算子の期待値を計算するための新しい手法を提案する。
この方法は任意の量子アルゴリズムに対して一般的であり、変分量子アルゴリズムの加速に特に関心がある。
論文 参考訳(メタデータ) (2025-03-03T17:15:23Z) - Strategies for optimizing double-bracket quantum algorithms [0.050257374758179374]
ダブルブラケット進化の選択を最適化するための戦略を提案する。
また,CNOTやシングルキュービット回転ゲートに直接コンパイル可能な対角展開パラメトリゼーションも提案する。
論文 参考訳(メタデータ) (2024-08-14T10:07:54Z) - Optimizing Variational Circuits for Higher-Order Binary Optimization [2.578242050187029]
本稿では,ハミルトニアンを2量子ゲートのみを含む実装可能な回路に符号化する新しい手法を提案する。
本手法は,回路深度の観点から明らかな利得を示すとともに,技術状況と比較することで評価する。
論文 参考訳(メタデータ) (2023-07-31T15:27:06Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
我々は、量子回路の最適化にグラフニューラルネットワーク(GNN)オートエンコーダの使い方を初めて提示する。
我々は、量子回路から有向非巡回グラフを構築し、そのグラフを符号化し、その符号化を用いてRL状態を表現する。
我々の手法は、非常に大規模なRL量子回路最適化に向けた最初の現実的な第一歩である。
論文 参考訳(メタデータ) (2023-03-06T16:51:30Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - Riemannian quantum circuit optimization for Hamiltonian simulation [2.1227079314039057]
ハミルトンシミュレーションは量子コンピューティングの自然な応用である。
翻訳不変系では、そのような回路トポロジのゲートは古典的なコンピュータでさらに最適化することができる。
一次元格子上のイジングとハイゼンベルクのモデルに対して、我々は桁違いの精度の向上を達成する。
論文 参考訳(メタデータ) (2022-12-15T00:00:17Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。