論文の概要: Optimizing Variational Circuits for Higher-Order Binary Optimization
- arxiv url: http://arxiv.org/abs/2307.16756v1
- Date: Mon, 31 Jul 2023 15:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 13:54:06.969366
- Title: Optimizing Variational Circuits for Higher-Order Binary Optimization
- Title(参考訳): 高次バイナリ最適化のための変分回路の最適化
- Authors: Zo\'e Verch\`ere and Sourour Elloumi and Andrea Simonetto
- Abstract要約: 本稿では,ハミルトニアンを2量子ゲートのみを含む実装可能な回路に符号化する新しい手法を提案する。
本手法は,回路深度の観点から明らかな利得を示すとともに,技術状況と比較することで評価する。
- 参考スコア(独自算出の注目度): 2.578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms have been advocated as promising candidates to
solve combinatorial optimization problems on near-term quantum computers. Their
methodology involves transforming the optimization problem into a quadratic
unconstrained binary optimization (QUBO) problem. While this transformation
offers flexibility and a ready-to-implement circuit involving only two-qubit
gates, it has been shown to be less than optimal in the number of employed
qubits and circuit depth, especially for polynomial optimization. On the other
hand, strategies based on higher-order binary optimization (HOBO) could save
qubits, but they would introduce additional circuit layers, given the presence
of higher-than-two-qubit gates.
In this paper, we study HOBO problems and propose new approaches to encode
their Hamiltonian into a ready-to-implement circuit involving only two-qubit
gates. Our methodology relies on formulating the circuit design as a
combinatorial optimization problem, in which we seek to minimize circuit depth.
We also propose handy simplifications and heuristics that can solve the circuit
design problem in polynomial time. We evaluate our approaches by comparing them
with the state of the art, showcasing clear gains in terms of circuit depth.
- Abstract(参考訳): 変分量子アルゴリズムは、近距離量子コンピュータにおける組合せ最適化問題を解く有望な候補として提唱されている。
彼らの手法は最適化問題を2次非制約バイナリ最適化(QUBO)問題に変換することを含む。
この変換は2量子ビットゲートのみを含むフレキシビリティと実装可能な回路を提供するが、特に多項式最適化において、採用キュービット数や回路深さが最適でないことが示されている。
一方、上位2進最適化(hobo)に基づく戦略は、キュービットを節約するが、2キュービット以上のゲートが存在するため、追加の回路層を導入することになる。
本稿では,HOBO問題を解析し,ハミルトニアンを2量子ゲートのみを含む実装可能な回路に符号化する新しい手法を提案する。
本手法は回路設計を組合せ最適化問題として定式化し,回路深さを最小化する手法である。
また,回路設計問題を多項式時間で解くための簡便な単純化とヒューリスティックを提案する。
本手法は,回路深度の観点から明らかな利得を示すとともに,技術状況と比較することで評価する。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Improving Quantum and Classical Decomposition Methods for Vehicle Routing [2.4646794072984477]
本稿では,2つの分解法,すなわちグラフ縮小と回路切断の精巧な組み合わせを提案する。
この結果から,現在の量子技術の制約内での最適化問題に対するアルゴリズムの性能に関する知見が得られた。
論文 参考訳(メタデータ) (2024-04-08T14:19:25Z) - Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training [0.0]
変分量子アルゴリズムは、短期デバイスにおける量子優位性を示すための有望な候補と見なされている。
本研究では,回路トレーニングにおけるバレンプラトー問題(BP)の悪影響を軽減するために,新しい最適化手法を提案する。
我々は16ドルキュービットと15,000ドルのエンタングゲートからなる量子回路に最適化戦略を適用した。
論文 参考訳(メタデータ) (2024-02-07T20:06:29Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
我々は、量子回路の最適化にグラフニューラルネットワーク(GNN)オートエンコーダの使い方を初めて提示する。
我々は、量子回路から有向非巡回グラフを構築し、そのグラフを符号化し、その符号化を用いてRL状態を表現する。
我々の手法は、非常に大規模なRL量子回路最適化に向けた最初の現実的な第一歩である。
論文 参考訳(メタデータ) (2023-03-06T16:51:30Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
論文 参考訳(メタデータ) (2021-12-12T04:00:45Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
我々はQQRA(Quantum Qubit Rotation Algorithm)という単純なアルゴリズムを導入する。
最大カット問題の近似解は 1 に近い確率で得られる。
我々は、よく知られた量子近似最適化アルゴリズムと古典的なゲーマン・ウィリアムソンアルゴリズムと比較する。
論文 参考訳(メタデータ) (2021-10-15T11:19:48Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。