論文の概要: RAGAT-Mind: A Multi-Granular Modeling Approach for Rumor Detection Based on MindSpore
- arxiv url: http://arxiv.org/abs/2504.17574v1
- Date: Thu, 24 Apr 2025 14:03:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.396831
- Title: RAGAT-Mind: A Multi-Granular Modeling Approach for Rumor Detection Based on MindSpore
- Title(参考訳): RAGAT-Mind:MindSporeに基づくマルチグラニュラーモデルによる地震検出手法
- Authors: Zhenkai Qin, Guifang Yang, Dongze Wu,
- Abstract要約: RAGAT-Mindは、MindSporeのディープラーニングフレームワーク上に構築された、中国の噂検出のためのマルチグラニュラーモデリングアプローチである。
このモデルは、局所意味抽出のためのTextCNN、シーケンシャルな文脈学習のための双方向GRU、グローバルな依存性集中のためのマルチヘッド自己認識、単語共起グラフの構造表現のための双方向グラフ畳み込みネットワーク(BiGCN)を統合している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: As false information continues to proliferate across social media platforms, effective rumor detection has emerged as a pressing challenge in natural language processing. This paper proposes RAGAT-Mind, a multi-granular modeling approach for Chinese rumor detection, built upon the MindSpore deep learning framework. The model integrates TextCNN for local semantic extraction, bidirectional GRU for sequential context learning, Multi-Head Self-Attention for global dependency focusing, and Bidirectional Graph Convolutional Networks (BiGCN) for structural representation of word co-occurrence graphs. Experiments on the Weibo1-Rumor dataset demonstrate that RAGAT-Mind achieves superior classification performance, attaining 99.2% accuracy and a macro-F1 score of 0.9919. The results validate the effectiveness of combining hierarchical linguistic features with graph-based semantic structures. Furthermore, the model exhibits strong generalization and interpretability, highlighting its practical value for real-world rumor detection applications.
- Abstract(参考訳): ソーシャルメディアプラットフォーム全体で偽情報が増え続けている中、効果的な噂検出が自然言語処理の急激な課題として浮上している。
本稿では,MindSporeディープラーニングフレームワーク上に構築された,中国の噂検出のためのマルチグラニュラーモデリング手法であるRAGAT-Mindを提案する。
このモデルは、局所意味抽出のためのTextCNN、シーケンシャルな文脈学習のための双方向GRU、グローバルな依存性集中のためのマルチヘッド自己認識、単語共起グラフの構造表現のための双方向グラフ畳み込みネットワーク(BiGCN)を統合している。
Weibo1-Rumorデータセットの実験では、RAGAT-Mindは99.2%の精度で、マクロF1スコアは0.9919である。
その結果,階層型言語特徴とグラフに基づく意味構造を組み合わせることの有効性が検証された。
さらに、このモデルは強力な一般化と解釈可能性を示し、現実の噂検出アプリケーションにおける実用的価値を強調している。
関連論文リスト
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - FedRGL: Robust Federated Graph Learning for Label Noise [5.296582539751589]
Federated Graph Learning(FGL)は、グラフニューラルネットワークに基づく分散機械学習パラダイムである。
本稿では,FedRGLと呼ばれるラベルノイズを用いた頑健なグラフ学習手法を提案する。
FedRGLは、様々なノイズ率、タイプ、クライアント数で12のベースライン手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-28T04:37:04Z) - Perturbation Ontology based Graph Attention Networks [26.95077612390953]
Ontology-based Graph Attention Networks (POGAT) は、オントロジーのサブグラフと高度な自己教師付き学習パラダイムを組み合わせて、深い文脈理解を実現する新しい方法論である。
POGATは最先端のベースラインを大幅に上回り、リンク予測のクリティカルタスクはF1スコアで10.78%、ノード分類のクリティカルタスクはMicro-F1で12.01%という画期的な改善を実現している。
論文 参考訳(メタデータ) (2024-11-27T17:12:14Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端(SOTA)GNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
Handwriting Mathematical Expression Recognition (HMER) タスクは、OCRの分野における重要な分岐である。
近年の研究では、双方向コンテキスト情報の導入により、HMERモデルの性能が大幅に向上することが示されている。
本稿では,MF-SLT と双方向非同期トレーニング (BAT) 構造を提案する。
論文 参考訳(メタデータ) (2023-12-31T09:24:21Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
論文 参考訳(メタデータ) (2023-06-07T07:40:04Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Research on Dual Channel News Headline Classification Based on ERNIE
Pre-training Model [13.222137788045416]
提案モデルは従来のニューラルネットワークモデルと比較して,ニュース見出し分類の精度,精度,F1スコアを改善する。
大規模データ量でのニュース見出しテキストのマルチクラス化アプリケーションでは、うまく機能する。
論文 参考訳(メタデータ) (2022-02-14T10:44:12Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
ドメイン適応技術は,異なる領域間のモデルを適応させることに重点を置いているが,ビデオ認識領域ではめったに研究されていない。
近年,映像のソースと対象映像の表現を統一するために,対角学習を活用する視覚領域適応はビデオにはあまり効果がない。
本稿では,ソースとターゲットの相互作用を直接モデル化するAdversarial Bipartite Graph (ABG)学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T03:48:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。