論文の概要: MindFlow: A Network Traffic Anomaly Detection Model Based on MindSpore
- arxiv url: http://arxiv.org/abs/2504.17678v1
- Date: Thu, 24 Apr 2025 15:48:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.447603
- Title: MindFlow: A Network Traffic Anomaly Detection Model Based on MindSpore
- Title(参考訳): MindFlow: MindSporeに基づくネットワークトラフィック異常検出モデル
- Authors: Qiuyan Xiang, Shuang Wu, Dongze Wu, Yuxin Liu, Zhenkai Qin,
- Abstract要約: 本研究では,多次元動的トラフィック予測と異常検出システムであるMindFlowを提案する。
提案モデルでは,精度,精度,リコール,F1スコアなどの重要な指標の99%を達成している。
- 参考スコア(独自算出の注目度): 7.564738687560689
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the wide application of IoT and industrial IoT technologies, the network structure is becoming more and more complex, and the traffic scale is growing rapidly, which makes the traditional security protection mechanism face serious challenges in dealing with high-frequency, diversified, and stealthy cyber-attacks. To address this problem, this study proposes MindFlow, a multi-dimensional dynamic traffic prediction and anomaly detection system combining convolutional neural network (CNN) and bi-directional long and short-term memory network (BiLSTM) architectures based on the MindSpore framework, and conducts systematic experiments on the NF-BoT-IoT dataset. The experimental results show that the proposed model achieves 99% in key metrics such as accuracy, precision, recall and F1 score, effectively verifying its accuracy and robustness in network intrusion detection.
- Abstract(参考訳): IoTと産業用IoT技術の幅広い応用により、ネットワーク構造はますます複雑になり、トラフィックの規模は急速に拡大している。
この問題に対処するために,MindSporeフレームワークに基づく畳み込みニューラルネットワーク(CNN)と双方向長・短期記憶ネットワーク(BiLSTM)アーキテクチャを組み合わせた多次元動的トラフィック予測および異常検出システムであるMindFlowを提案し,NF-BoT-IoTデータセット上で体系的な実験を行う。
実験の結果,提案モデルは精度,精度,リコール,F1スコアなどの重要な指標の99%を達成し,ネットワーク侵入検出における精度と堅牢性を効果的に検証した。
関連論文リスト
- Research on Cloud Platform Network Traffic Monitoring and Anomaly Detection System based on Large Language Models [5.524069089627854]
本稿では,大規模言語モデル(LLM)に基づくネットワークトラフィック監視と異常検出システムを提案する。
事前訓練された大言語モデルは、予測可能なネットワークトラフィックを分析し予測し、異常検出層は時間性とコンテキストを考慮する。
その結果,設計したモデルは,検出精度と計算効率において従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2025-04-22T07:42:07Z) - A Temporal Convolutional Network-based Approach for Network Intrusion Detection [0.0]
本研究では,ネットワークトラフィックデータの依存関係をキャプチャするために,拡張畳み込みを伴う残差ブロックアーキテクチャを特徴とする時間畳み込みネットワーク(TCN)モデルを提案する。
提案したモデルは96.72%の精度と0.0688の損失を達成し、1D CNN、CNN-LSTM、CNN-GRU、CNN-BiLSTM、CNN-GRU-LSTMモデルを上回った。
論文 参考訳(メタデータ) (2024-12-23T10:19:29Z) - Short-reach Optical Communications: A Real-world Task for Neuromorphic Hardware [42.043435071139434]
専用のニューロモルフィックアクセラレーターにエミュレートされたスパイキングニューラルネットワーク(SNN)は、エネルギー効率のよい信号処理を提供する。
ここでは、データセンターで使用される高速光通信システムに関連する、強度変調、直接検出(IM/DD)タスクについて述べる。
論文 参考訳(メタデータ) (2024-12-04T08:46:55Z) - Explosive neural networks via higher-order interactions in curved statistical manifolds [43.496401697112695]
曲線ニューラルネットワークは,パラメータ数に制限のあるプロトタイプモデルのクラスとして導入する。
これらの曲線ニューラルネットワークは、メモリ検索を高速化する自己制御プロセスを実装している。
強磁性相とスピングラス相の境界付近のレプリカ手法を用いて, メモリ・検索能力の解析を行った。
論文 参考訳(メタデータ) (2024-08-05T09:10:29Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
本稿では,ALOHAネットワークにおけるバーストトラフィック予測に適した機械学習ベースのフレームワークを提案する。
我々は,mMTCネットワークから頻繁に収集されたデータを活用することでLSTMネットワークの状態を更新する,新しい低複雑さオンライン予測アルゴリズムを開発した。
本研究では,単一基地局と数千のデバイスを異なるトラフィック発生特性を持つグループに編成したネットワーク上でのフレームワークの性能を評価する。
論文 参考訳(メタデータ) (2024-05-08T17:28:07Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Revolutionizing Cyber Threat Detection with Large Language Models: A
privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices [3.340416780217405]
本稿では,インターネットネットワークにおけるサイバー脅威検出にBERT(Bidirectional Representations from Transformers)モデルを活用する,新たなアーキテクチャであるSecurityBERTを提案する。
我々の研究は、SecurityBERTがサイバー脅威検出において、畳み込みニューラルネットワーク(CNNIoT)やリカレントニューラルネットワーク(IoTRNN)など、従来の機械学習(ML)とディープラーニング(DL)の手法より優れていることを示した。
SecurityBERTは、14の異なる攻撃タイプを特定することで、98.2%の全体的な精度を達成し、ハイブリッドソリューションによって設定された過去の記録を上回った。
論文 参考訳(メタデータ) (2023-06-25T15:04:21Z) - FERN: Leveraging Graph Attention Networks for Failure Evaluation and
Robust Network Design [46.302926845889694]
我々は、スケーラブルな故障評価とロバストネットワーク設計のための学習ベースのフレームワークFERNを開発した。
FERNは、リッチな問題入力をグラフとして表現し、グラフから特徴抽出を注意深く実行することによって、ローカルとグローバルの両方のビューをキャプチャする。
複数のロバストなネットワーク設計問題を,それぞれ80倍,200倍,10倍以上スピードアップすることができる。
論文 参考訳(メタデータ) (2023-05-30T15:56:25Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。