Near-Driven Autonomous Rover Navigation in Complex Environments: Extensions to Urban Search-and-Rescue and Industrial Inspection
- URL: http://arxiv.org/abs/2504.17794v1
- Date: Fri, 11 Apr 2025 20:00:23 GMT
- Title: Near-Driven Autonomous Rover Navigation in Complex Environments: Extensions to Urban Search-and-Rescue and Industrial Inspection
- Authors: Dhadkan Shrestha, Lincoln Bhattarai,
- Abstract summary: This paper explores the use of an extended neuroevolutionary approach, based on NeuroEvolution of Augmenting Topologies (NEAT), for autonomous robots in dynamic environments associated with hazardous tasks.<n>NEAT-evolved controllers achieve success rates comparable to state-of-the-art deep reinforcement learning methods, with superior structural adaptability.<n>The paper also highlights the benefits of transfer learning among tasks and evaluates the effectiveness of NEAT in complex 3D navigation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the use of an extended neuroevolutionary approach, based on NeuroEvolution of Augmenting Topologies (NEAT), for autonomous robots in dynamic environments associated with hazardous tasks like firefighting, urban search-and-rescue (USAR), and industrial inspections. Building on previous research, it expands the simulation environment to larger and more complex settings, demonstrating NEAT's adaptability across different applications. By integrating recent advancements in NEAT and reinforcement learning, the study uses modern simulation frameworks for realism and hybrid algorithms for optimization. Experimental results show that NEAT-evolved controllers achieve success rates comparable to state-of-the-art deep reinforcement learning methods, with superior structural adaptability. The agents reached ~80% success in outdoor tests, surpassing baseline models. The paper also highlights the benefits of transfer learning among tasks and evaluates the effectiveness of NEAT in complex 3D navigation. Contributions include evaluating NEAT for diverse autonomous applications and discussing real-world deployment considerations, emphasizing the approach's potential as an alternative or complement to deep reinforcement learning in autonomous navigation tasks.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios.<n>Existing approaches face critical limitations that lack high-quality training trajectories and suffer from distributional mismatches.<n>This paper introduces SimpleDeepSearcher, a framework that bridges the gap through strategic data engineering rather than complex training paradigms.
arXiv Detail & Related papers (2025-05-22T16:05:02Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Training a Generally Curious Agent [86.84089201249104]
We present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities.<n> Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks.<n>These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems.
arXiv Detail & Related papers (2025-02-24T18:56:58Z) - Vision-Based Deep Reinforcement Learning of UAV Autonomous Navigation Using Privileged Information [6.371251946803415]
DPRL is an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions.<n>We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training.<n>We conduct extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms.
arXiv Detail & Related papers (2024-12-09T09:05:52Z) - Research on Autonomous Robots Navigation based on Reinforcement Learning [13.559881645869632]
We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process.
We have verified the effectiveness and robustness of these models in various complex scenarios.
arXiv Detail & Related papers (2024-07-02T00:44:06Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
Embodied vision-language models (VLMs) have achieved substantial progress in multimodal perception and reasoning.
To bridge this gap, we introduce Octopus, an embodied vision-language programmer that uses executable code generation as a medium to connect planning and manipulation.
Octopus is designed to 1) proficiently comprehend an agent's visual and textual task objectives, 2) formulate intricate action sequences, and 3) generate executable code.
arXiv Detail & Related papers (2023-10-12T17:59:58Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
In reinforcement learning (RL) research, simulations enable benchmarks between algorithms.
In this paper, we introduce Karolos, a framework developed for robotic applications.
The code is open source and published on GitHub with the aim of promoting research of RL applications in robotics.
arXiv Detail & Related papers (2022-12-01T23:14:02Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Multi-Agent Simulation for AI Behaviour Discovery in Operations Research [0.9137554315375919]
ACE0 is a platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations.
We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system.
arXiv Detail & Related papers (2021-08-30T15:14:06Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.