論文の概要: Spectral Bias Correction in PINNs for Myocardial Image Registration of Pathological Data
- arxiv url: http://arxiv.org/abs/2504.17945v1
- Date: Thu, 24 Apr 2025 21:18:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.580174
- Title: Spectral Bias Correction in PINNs for Myocardial Image Registration of Pathological Data
- Title(参考訳): 心筋画像記録におけるPINNのスペクトルバイアス補正
- Authors: Bastien C. Baluyot, Marta Varela, Chen Qin,
- Abstract要約: ニューラルネットワークのスペクトルバイアスは、高周波変形をモデル化することを妨げる。
本稿では、フーリエ特徴写像を統合し、変調戦略をPINNフレームワークに導入することにより、物理情報ニューラルネットワーク(PINN)のスペクトルバイアスに対処する。
- 参考スコア(独自算出の注目度): 3.046981426681864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate myocardial image registration is essential for cardiac strain analysis and disease diagnosis. However, spectral bias in neural networks impedes modeling high-frequency deformations, producing inaccurate, biomechanically implausible results, particularly in pathological data. This paper addresses spectral bias in physics-informed neural networks (PINNs) by integrating Fourier Feature mappings and introducing modulation strategies into a PINN framework. Experiments on two distinct datasets demonstrate that the proposed methods enhance the PINN's ability to capture complex, high-frequency deformations in cardiomyopathies, achieving superior registration accuracy while maintaining biomechanical plausibility - thus providing a foundation for scalable cardiac image registration and generalization across multiple patients and pathologies.
- Abstract(参考訳): 正確な心筋画像登録は、心臓のひずみ解析と疾患診断に不可欠である。
しかし、ニューラルネットワークのスペクトルバイアスは、特に病理学的データにおいて、高周波の変形をモデル化し、不正確な、生体力学的に予測不可能な結果を生み出すことを妨げている。
本稿では、フーリエ特徴写像を統合し、変調戦略をPINNフレームワークに導入することにより、物理情報ニューラルネットワーク(PINN)のスペクトルバイアスに対処する。
2つの異なるデータセットの実験により、提案手法は、心臓筋病理の複雑で高周波な変形を捕捉するPINNの能力を向上し、バイオメカニカル・プラウザビリティを維持しつつ、より優れた登録精度を達成し、複数の患者や病理にまたがるスケーラブルな心臓画像登録と一般化の基礎を提供することを示した。
関連論文リスト
- Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
拡散モデルは,必要な医用画像を合成するための強力な戦略である。
既存のアプローチはまだ、高周波情報の過度な適合による解剖学的構造歪みの問題に悩まされている。
本稿では,動的周波数バランスと知識指導に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2025-04-13T05:48:13Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - Multi-scale, Data-driven and Anatomically Constrained Deep Learning
Image Registration for Adult and Fetal Echocardiography [4.923733944174007]
胎児と成人のエコーにおける深層学習画像登録のための3つの戦略を組み合わせた枠組みを提案する。
以上の結果から, 良好な解剖学的トポロジーと画像テクスチャは, 形状符号化およびデータ駆動型対向損失と強く結びついていることが判明した。
当社のアプローチは,光学フローやElastixなど,従来の非DLゴールド登録手法よりも優れています。
論文 参考訳(メタデータ) (2023-09-02T05:33:31Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z) - Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis [29.489129970039873]
健全な領域を特定するための有望なアプローチは、グラフニューラルネットワーク(GNN)を使用することである。
本稿では,障害に関連する神経学的脳バイオマーカーを決定するために,新しい領域選択機構を備えた解釈可能なGNNフレームワークを提案する。
本稿では,バイオポイント自閉症スペクトラム障害 (ASD) fMRIデータセットにPR-GNNフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-29T04:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。