Reliable Thermal Monitoring of Electric Machines through Machine Learning
- URL: http://arxiv.org/abs/2504.19141v1
- Date: Sun, 27 Apr 2025 07:44:29 GMT
- Title: Reliable Thermal Monitoring of Electric Machines through Machine Learning
- Authors: Panagiotis Kakosimos,
- Abstract summary: It is essential to monitor the internal temperatures of machines and keep them within safe operating limits.<n>With the amount of data collected these days, it is possible to use information models to assess thermal behaviors.<n>This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The electrification of powertrains is rising as the objective for a more viable future is intensified. To ensure continuous and reliable operation without undesirable malfunctions, it is essential to monitor the internal temperatures of machines and keep them within safe operating limits. Conventional modeling methods can be complex and usually require expert knowledge. With the amount of data collected these days, it is possible to use information models to assess thermal behaviors. This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines. Experimental data was collected under specific operating conditions, and three machine-learning models have been developed. The optimal configuration for each approach was determined through rigorous hyperparameter searches, and the models were evaluated using a variety of metrics. The three solutions performed well in monitoring the condition of the machine even under transient operation, highlighting the potential of data-driven methods in improving the thermal management.
Related papers
- Temperature Estimation in Induction Motors using Machine Learning [0.0]
Monitoring the internal temperatures of motors and keeping them under their thresholds is an important first step.<n>With all the data a modern electric drive collects nowadays during the system operation, it is feasible to apply data-driven approaches for estimating thermal behaviors.<n>In this paper, multiple machine-learning methods are investigated on their capability to approximate the temperatures of the stator winding and bearing in induction motors.
arXiv Detail & Related papers (2025-04-25T06:22:31Z) - Machine learning-based condition monitoring of powertrains in modern electric drives [0.0]
Leveraging data analytics has enabled the collection of deep insights into the performance and, as a result, the optimization of assets.<n>Data already residing in most modern electric drives has been used to develop a data-driven thermal model of a power module.
arXiv Detail & Related papers (2025-04-24T06:59:38Z) - A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences [59.05404971880922]
Many problems in meteorology can now be addressed using AI models.<n>Data-driven algorithms have significantly improved accuracy compared to traditional methods.<n>We propose a new paradigm where observational data from different perspectives are treated as multimodal data and integrated via transformers.
arXiv Detail & Related papers (2025-04-19T04:31:35Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Refining the ONCE Benchmark with Hyperparameter Tuning [45.55545585587993]
This work focuses on the evaluation of semi-supervised learning approaches for point cloud data.
Data annotation is of paramount importance in the context of LiDAR applications.
We show that improvements from previous semi-supervised methods may not be as profound as previously thought.
arXiv Detail & Related papers (2023-11-10T13:39:07Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
We develop a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks.
Partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history.
Results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately.
arXiv Detail & Related papers (2022-06-15T18:27:10Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Interpreting Machine Learning Models for Room Temperature Prediction in
Non-domestic Buildings [0.0]
This work presents an interpretable machine learning model aimed at predicting room temperature in non-domestic buildings.
We demonstrate experimentally that the proposed model can accurately forecast room temperatures eight hours ahead in real-time.
arXiv Detail & Related papers (2021-11-23T11:16:35Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task.
Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design.
Several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles.
arXiv Detail & Related papers (2020-01-17T11:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.