Score-Based Deterministic Density Sampling
- URL: http://arxiv.org/abs/2504.18130v2
- Date: Sat, 17 May 2025 00:37:55 GMT
- Title: Score-Based Deterministic Density Sampling
- Authors: Vasily Ilin, Peter Sushko, Jingwei Hu,
- Abstract summary: Our method approximates the gradient flow on $mathrmKL(f_t|pi)$ by learning the time-varying score $nabla log f_t$ on the fly.<n>While having the same marginal distribution as Langevin dynamics, our method produces smooth deterministic trajectories, resulting in monotone noise-free convergence.
- Score: 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deterministic sampling framework using Score-Based Transport Modeling for sampling an unnormalized target density $\pi$ given only its score $\nabla \log \pi$. Our method approximates the Wasserstein gradient flow on $\mathrm{KL}(f_t\|\pi)$ by learning the time-varying score $\nabla \log f_t$ on the fly using score matching. While having the same marginal distribution as Langevin dynamics, our method produces smooth deterministic trajectories, resulting in monotone noise-free convergence. We prove that our method dissipates relative entropy at the same rate as the exact gradient flow, provided sufficient training. Numerical experiments validate our theoretical findings: our method converges at the optimal rate, has smooth trajectories, and is usually more sample efficient than its stochastic counterpart. Experiments on high dimensional image data show that our method produces high quality generations in as few as 15 steps and exhibits natural exploratory behavior. The memory and runtime scale linearly in the sample size.
Related papers
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.<n>Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.<n>Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) is a generative model that aims to learn straight flow trajectories from noise to data.<n>We provide a theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.<n>We present general conditions guaranteeing uniqueness and straightness of 1-RF, which is in line with previous empirical findings.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Entropy contraction of the Gibbs sampler under log-concavity [0.16385815610837165]
We show that the random scan Gibbs sampler contracts in relative entropy and provide a sharp characterization of the associated contraction rate.
Our techniques are versatile and extend to Metropolis-within-Gibbs schemes and the Hit-and-Run algorithm.
arXiv Detail & Related papers (2024-10-01T16:50:36Z) - A Practical Diffusion Path for Sampling [8.174664278172367]
Diffusion models are used in generative modeling to estimate score vectors guiding a Langevin process.
Previous approaches rely on Monte Carlo estimators that are either computationally heavy to implement or sample-inefficient.
We propose a computationally attractive alternative, relying on the so-called dilation path, that yields score vectors that are available in closed-form.
arXiv Detail & Related papers (2024-06-20T07:00:56Z) - Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
We show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
We also show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
arXiv Detail & Related papers (2024-06-03T01:34:34Z) - Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
We prove an $mathcalO(t-1)$ lower bound rate for the OT map, using the similarity between Laguerre cells estimation and density support estimation.<n>To nearly achieve the desired fast rate, we design an entropic regularization scheme decreasing with the number of samples.
arXiv Detail & Related papers (2024-05-23T11:46:03Z) - Accelerating Convergence of Score-Based Diffusion Models, Provably [44.11766377798812]
Score-based diffusion models often suffer from low sampling speed due to extensive function evaluations needed during the sampling phase.
We design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and (i.e., DDPM) samplers.
Our theory accommodates $ell$-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.
arXiv Detail & Related papers (2024-03-06T17:02:39Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
We present simulation-free score and flow matching ([SF]$2$M)
Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous flows.
Notably, [SF]$2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks simulated data.
arXiv Detail & Related papers (2023-07-07T15:42:35Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSAC is a differentiable RANSAC that allows learning the entire randomized robust estimation pipeline.
$nabla$-RANSAC is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives.
arXiv Detail & Related papers (2022-12-26T15:13:13Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - The Boomerang Sampler [4.588028371034406]
This paper introduces the Boomerang Sampler as a novel class of continuous-time non-reversible Markov chain Monte Carlo algorithms.
We demonstrate that the method is easy to implement and demonstrate empirically that it can out-perform existing benchmark piecewise deterministic Markov processes.
arXiv Detail & Related papers (2020-06-24T14:52:22Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.