論文の概要: PHEATPRUNER: Interpretable Data-centric Feature Selection for Multivariate Time Series Classification through Persistent Homology
- arxiv url: http://arxiv.org/abs/2504.18329v1
- Date: Fri, 25 Apr 2025 13:14:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.774124
- Title: PHEATPRUNER: Interpretable Data-centric Feature Selection for Multivariate Time Series Classification through Persistent Homology
- Title(参考訳): PHEATPRUNER:永続ホモロジーによる多変量時系列分類のための解釈可能なデータ中心の特徴選択
- Authors: Anh-Duy Pham, Olivier Basole Kashongwe, Martin Atzmueller, Tim Römer,
- Abstract要約: PHeatPrunerは時系列分類における性能と解釈可能性のバランスをとる方法である。
永続ホモロジーは、適用変数の最大45%のプルーニングを促進する。
シーフ理論は、データの構造的ニュアンスに関する深い洞察を提供する説明ベクトルに寄与する。
- 参考スコア(独自算出の注目度): 0.0937465283958018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Balancing performance and interpretability in multivariate time series classification is a significant challenge due to data complexity and high dimensionality. This paper introduces PHeatPruner, a method integrating persistent homology and sheaf theory to address these challenges. Persistent homology facilitates the pruning of up to 45% of the applied variables while maintaining or enhancing the accuracy of models such as Random Forest, CatBoost, XGBoost, and LightGBM, all without depending on posterior probabilities or supervised optimization algorithms. Concurrently, sheaf theory contributes explanatory vectors that provide deeper insights into the data's structural nuances. The approach was validated using the UEA Archive and a mastitis detection dataset for dairy cows. The results demonstrate that PHeatPruner effectively preserves model accuracy. Furthermore, our results highlight PHeatPruner's key features, i.e. simplifying complex data and offering actionable insights without increasing processing time or complexity. This method bridges the gap between complexity reduction and interpretability, suggesting promising applications in various fields.
- Abstract(参考訳): 多変量時系列分類における性能と解釈可能性のバランスをとることは、データの複雑さと高次元性のために重要な課題である。
本稿では,これらの課題に対処するために,永続的ホモロジーとせん断理論を統合する手法であるPHeatPrunerを紹介する。
永続ホモロジーは、適用変数の最大45%のプルーニングを促進すると同時に、Random Forest、CatBoost、XGBoost、LightGBMといったモデルの精度を維持したり、向上させる。
同時に、シーフ理論はデータの構造的ニュアンスに関する深い洞察を提供する説明ベクトルに寄与する。
UEAアーカイブと乳牛の乳房炎検出データセットを用いて,本手法の有効性を検証した。
その結果,PHeatPrunerはモデル精度を効果的に維持できることがわかった。
さらに、PHeatPrunerの主な特徴、すなわち、複雑なデータを単純化し、処理時間や複雑さを増大させることなく実行可能な洞察を提供する。
この手法は複雑性の低減と解釈可能性のギャップを埋め、様々な分野の有望な応用を提案する。
関連論文リスト
- Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery [5.430532390358285]
因果発見は、データの因果関係を特定するように設計されている。
時系列因果発見は、時間的依存と潜在的な時間ラグの影響を考慮する必要があるため、特に困難である。
本研究は大規模データセット処理の実現可能性を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-09T10:52:58Z) - Discovering physical laws with parallel combinatorial tree search [57.05912962368898]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは10年以上にわたって精度と効率の重大なボトルネックに直面してきた。
制約データから汎用数学的表現を効率的に抽出する並列木探索(PCTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Latent Processes Identification From Multi-View Time Series [17.33428123777779]
本稿では,データ生成過程を逆転させて識別可能性を高めるために,コントラスト学習技術を用いた新しいフレームワークを提案する。
MuLTIは、最適輸送公式の確立によって、対応する重複変数をマージする置換機構を統合する。
論文 参考訳(メタデータ) (2023-05-14T14:21:58Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Generalizable Mixed-Precision Quantization via Attribution Rank
Preservation [90.26603048354575]
効率的な推論のための一般化可能な混合精度量子化法(GMPQ)を提案する。
提案手法は,最先端の混合精度ネットワークと比較し,競合精度・複雑度トレードオフを求める。
論文 参考訳(メタデータ) (2021-08-05T16:41:57Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
ガウス過程(GP)は、大きなデータセット、カテゴリ入力、および複数の応答を調節するのに困難である。
本稿では,変分推論によって得られた潜伏変数と関数を用いて,上記の課題を同時に解決するGPモデルを提案する。
本手法は三元系酸化物材料の機械学習と多スケール対応機構のトポロジー最適化に有用である。
論文 参考訳(メタデータ) (2021-06-26T02:17:23Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。