論文の概要: Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
- arxiv url: http://arxiv.org/abs/2504.18346v1
- Date: Fri, 25 Apr 2025 13:34:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.78193
- Title: Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
- Title(参考訳): 大規模言語モデルの不確かさ測定と緩和法の比較:体系的レビュー
- Authors: Toghrul Abbasli, Kentaroh Toyoda, Yuan Wang, Leon Witt, Muhammad Asif Ali, Yukai Miao, Dan Li, Qingsong Wei,
- Abstract要約: 大規模言語モデル(LLM)は多くの領域にまたがって変換されている。
不確実性定量化(英: Uncertainty Quantification, UQ)とは、不確実性の測定と、不確実性と正確性の間の不一致に対処するための校正技術である。
この調査は、LCMの校正方法と関連するメトリクスをレビューする最初の専用研究である。
- 参考スコア(独自算出の注目度): 11.856357456956351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been transformative across many domains. However, hallucination -- confidently outputting incorrect information -- remains one of the leading challenges for LLMs. This raises the question of how to accurately assess and quantify the uncertainty of LLMs. Extensive literature on traditional models has explored Uncertainty Quantification (UQ) to measure uncertainty and employed calibration techniques to address the misalignment between uncertainty and accuracy. While some of these methods have been adapted for LLMs, the literature lacks an in-depth analysis of their effectiveness and does not offer a comprehensive benchmark to enable insightful comparison among existing solutions. In this work, we fill this gap via a systematic survey of representative prior works on UQ and calibration for LLMs and introduce a rigorous benchmark. Using two widely used reliability datasets, we empirically evaluate six related methods, which justify the significant findings of our review. Finally, we provide outlooks for key future directions and outline open challenges. To the best of our knowledge, this survey is the first dedicated study to review the calibration methods and relevant metrics for LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は多くの領域にまたがって変換されている。
しかし、誤った情報を確実に出力する幻覚は、LLMにとって主要な課題の1つだ。
これにより、LCMの不確かさを正確に評価し、定量化する方法について疑問が持ち上がる。
従来のモデルに関する広範な文献は、不確実性定量化(UQ)を計測し、不確かさと正確さの相違に対処するために校正技術を用いている。
これらの手法のいくつかはLLMに適用されているが、この文献はそれらの効果の詳細な分析を欠いており、既存のソリューション間の洞察力のある比較を可能にするための包括的なベンチマークを提供していない。
本研究では,LLMのUQとキャリブレーションに関する先行研究を体系的に調査し,厳密なベンチマークを導入することで,このギャップを埋める。
広く利用されている2つの信頼性データセットを用いて、6つの関連手法を実証的に評価し、レビューの重要な発見を正当化する。
最後に、今後の重要な方向性の見通しを提供し、オープンな課題を概説する。
我々の知る限り、この調査は、LCMの校正方法と関連するメトリクスをレビューする最初の専用研究である。
関連論文リスト
- An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
我々は2つの異なる評価条件で9つのLLM評価器を用いた実験を行った。
LLM評価器はモデルファミリやサイズによって様々な不確実性を示す。
推論やポストトレーニングのときでも、特別なプロンプト戦略を採用することで、評価の不確実性をある程度軽減できることがわかった。
論文 参考訳(メタデータ) (2025-02-15T07:45:20Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCHは、大きな言語モデルを評価するためのベンチマークである。
これには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
また,15個のLPMの信頼性を評価し,GLM4が最も優れていることを発見した。
論文 参考訳(メタデータ) (2024-06-18T16:50:38Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
LLMにおける不確実性推定と校正の問題について検討する。
LLMの応答の不確かさを推定するためにラベル付きデータセットを利用する教師付きアプローチを提案する。
本手法は,ブラックボックス,グレイボックス,ホワイトボックスなど,モデルアクセシビリティの異なるレベルに適応し,実装が容易である。
論文 参考訳(メタデータ) (2024-04-24T17:10:35Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
本稿では,大規模言語モデル(LLM)における既存の故障検出手法の有効性について検討する。
既存の手法の故障検出能力を高めるために, textbfMutation による予測を行う textbfConfidence textbfSmoothing フレームワーク textbfMuCS を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:06:12Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
大規模言語モデル(LLM)は、様々な領域において幅広いタスクにまたがる顕著な機能を示している。
印象的なパフォーマンスにもかかわらず、彼らは世代内の事実上の誤りのために信頼できない。
信頼度を評価し、異なるタスクで調整することで、リスクを軽減し、LLMがより良い世代を創出できるようになります。
論文 参考訳(メタデータ) (2023-11-14T16:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。