A Cognitive-Mechanistic Human Reliability Analysis Framework: A Nuclear Power Plant Case Study
- URL: http://arxiv.org/abs/2504.18604v1
- Date: Fri, 25 Apr 2025 00:46:00 GMT
- Title: A Cognitive-Mechanistic Human Reliability Analysis Framework: A Nuclear Power Plant Case Study
- Authors: Xingyu Xiao, Peng Chen, Jiejuan Tong, Shunshun Liu, Hongru Zhao, Jun Zhao, Qianqian Jia, Jingang Liang, Haitao Wang,
- Abstract summary: This study proposes a cognitive-mechanistic framework (COGMIF) that enhances the IDHEAS-ECA methodology.<n>It integrates an ACT-R-based human digital twin (HDT) with TimeGAN-augmented simulation.<n>TimeGAN is trained on ACT-R-generated time-series data to produce high-fidelity synthetic operator behavior datasets.
- Score: 7.583754429526051
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional human reliability analysis (HRA) methods, such as IDHEAS-ECA, rely on expert judgment and empirical rules that often overlook the cognitive underpinnings of human error. Moreover, conducting human-in-the-loop experiments for advanced nuclear power plants is increasingly impractical due to novel interfaces and limited operational data. This study proposes a cognitive-mechanistic framework (COGMIF) that enhances the IDHEAS-ECA methodology by integrating an ACT-R-based human digital twin (HDT) with TimeGAN-augmented simulation. The ACT-R model simulates operator cognition, including memory retrieval, goal-directed procedural reasoning, and perceptual-motor execution, under high-fidelity scenarios derived from a high-temperature gas-cooled reactor (HTGR) simulator. To overcome the resource constraints of large-scale cognitive modeling, TimeGAN is trained on ACT-R-generated time-series data to produce high-fidelity synthetic operator behavior datasets. These simulations are then used to drive IDHEAS-ECA assessments, enabling scalable, mechanism-informed estimation of human error probabilities (HEPs). Comparative analyses with SPAR-H and sensitivity assessments demonstrate the robustness and practical advantages of the proposed COGMIF. Finally, procedural features are mapped onto a Bayesian network to quantify the influence of contributing factors, revealing key drivers of operational risk. This work offers a credible and computationally efficient pathway to integrate cognitive theory into industrial HRA practices.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models [0.5223954072121659]
Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models.<n>In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference.<n>The proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
arXiv Detail & Related papers (2024-12-29T21:22:24Z) - X-Fake: Juggling Utility Evaluation and Explanation of Simulated SAR Images [49.546627070454456]
The distribution inconsistency between real and simulated data is the main obstacle that influences the utility of simulated SAR images.
We propose a novel trustworthy utility evaluation framework with a counterfactual explanation for simulated SAR images for the first time, denoted as X-Fake.
The proposed framework is validated on four simulated SAR image datasets obtained from electromagnetic models and generative artificial intelligence approaches.
arXiv Detail & Related papers (2024-07-28T09:27:53Z) - Offline Risk-sensitive RL with Partial Observability to Enhance
Performance in Human-Robot Teaming [1.3980986259786223]
We propose a method to incorporate model uncertainty, thus enabling risk-sensitive sequential decision-making.
Experiments were conducted with a group of twenty-six human participants within a simulated robot teleoperation environment.
arXiv Detail & Related papers (2024-02-08T14:27:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Estimating Koopman operators with sketching to provably learn large
scale dynamical systems [37.18243295790146]
The theory of Koopman operators allows to deploy non-parametric machine learning algorithms to predict and analyze complex dynamical systems.
We boost the efficiency of different kernel-based Koopman operator estimators using random projections.
We establish non error bounds giving a sharp characterization of the trade-offs between statistical learning rates and computational efficiency.
arXiv Detail & Related papers (2023-06-07T15:30:03Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
We introduce two synthetic likelihood methods for Simulation-Based Inference.
We learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator.
We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a model of the neuroscience network in the crab.
arXiv Detail & Related papers (2022-10-26T14:38:24Z) - Learnability of Competitive Threshold Models [11.005966612053262]
We study the learnability of the competitive threshold model from a theoretical perspective.
We demonstrate how competitive threshold models can be seamlessly simulated by artificial neural networks.
arXiv Detail & Related papers (2022-05-08T01:11:51Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z) - Interpreting Machine Learning Models for Room Temperature Prediction in
Non-domestic Buildings [0.0]
This work presents an interpretable machine learning model aimed at predicting room temperature in non-domestic buildings.
We demonstrate experimentally that the proposed model can accurately forecast room temperatures eight hours ahead in real-time.
arXiv Detail & Related papers (2021-11-23T11:16:35Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.