論文の概要: Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
- arxiv url: http://arxiv.org/abs/2504.19012v2
- Date: Thu, 01 May 2025 12:49:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.086352
- Title: Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
- Title(参考訳): 時空間力学系の幾何認識能動的学習
- Authors: Xizhuo Zhang, Bing Yao,
- Abstract要約: 本稿では,動的システムのモデリングのための幾何対応能動学習フレームワークを提案する。
データ収集のための空間的位置を戦略的に識別し、予測精度をさらに最大化する適応型能動学習戦略を開発した。
- 参考スコア(独自算出の注目度): 4.251030047034566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid developments in advanced sensing and imaging have significantly enhanced information visibility, opening opportunities for predictive modeling of complex dynamic systems. However, sensing signals acquired from such complex systems are often distributed across 3D geometries and rapidly evolving over time, posing significant challenges in spatiotemporal predictive modeling. This paper proposes a geometry-aware active learning framework for modeling spatiotemporal dynamic systems. Specifically, we propose a geometry-aware spatiotemporal Gaussian Process (G-ST-GP) to effectively integrate the temporal correlations and geometric manifold features for reliable prediction of high-dimensional dynamic behaviors. In addition, we develop an adaptive active learning strategy to strategically identify informative spatial locations for data collection and further maximize the prediction accuracy. This strategy achieves the adaptive trade-off between the prediction uncertainty in the G-ST-GP model and the space-filling design guided by the geodesic distance across the 3D geometry. We implement the proposed framework to model the spatiotemporal electrodynamics in a 3D heart geometry. Numerical experiments show that our framework outperforms traditional methods lacking the mechanism of geometric information incorporation or effective data collection.
- Abstract(参考訳): 高度なセンシングとイメージングの急速な発展は、情報視認性を著しく向上させ、複雑な力学系の予測モデリングの機会を開放した。
しかし、このような複雑なシステムから取得したセンシング信号は、しばしば3次元の測地層に分散し、時間とともに急速に進化し、時空間予測モデリングにおいて重要な課題を提起する。
本稿では,時空間力学系をモデル化するための幾何対応能動学習フレームワークを提案する。
具体的には、高次元動的挙動の信頼性予測のために、時間相関と幾何多様体の特徴を効果的に統合する幾何学的時空間ガウス過程(G-ST-GP)を提案する。
さらに,データ収集のための情報的空間的位置を戦略的に同定し,予測精度をさらに高めるための適応型能動的学習戦略を開発した。
この戦略はG-ST-GPモデルにおける予測の不確かさと3次元幾何学的距離で導かれる空間充填設計との間の適応的なトレードオフを実現する。
本研究では,3次元心臓形状の時空間電気力学をモデル化するためのフレームワークを実装した。
数値実験により,我々のフレームワークは,幾何情報の導入や効果的なデータ収集のメカニズムが欠如している従来の手法よりも優れていることが示された。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
下流タスクの最適化には,V2Vチャネル状態情報(CSI)予測が不可欠である。
従来の予測手法は、時間、帯域幅、アンテナ(TX、RX)空間の予測を含む4次元(4D)CSIに重点を置いている。
本研究では,4次元CSIデータ内の依存関係をキャプチャするコンテキスト条件付き時間予測学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T04:15:36Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
本稿では,ビデオ中の3次元ポーズ推定のためのS-Temporal GraphFormerフレームワーク(STGFormer)を提案する。
まず,人体固有のグラフ分布をより効果的に活用するためのSTGアテンション機構を導入する。
次に、時間次元と空間次元を独立に並列に処理するための変調ホップワイド正規GCNを提案する。
最後に,Human3.6MおよびMPIINF-3DHPデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-07-14T06:45:27Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
我々は、簡潔なグラフとSkipped Transformerアーキテクチャを用いて、Transformer-temporal情報を活用するためのグローバルなアプローチを採っている。
具体的には、3Dポーズの段階では、粗粒の体部が展開され、完全なデータ駆動適応モデルが構築される。
実験はHuman3.6M、MPI-INF-3DHP、Human-Evaベンチマークで行われた。
論文 参考訳(メタデータ) (2024-07-03T10:42:09Z) - GNPM: Geometric-Aware Neural Parametric Models [6.620111952225635]
本研究では,データの局所的構造を考慮し,ゆがんだ形状を学習し,4次元力学の潜在空間を呈する学習パラメトリックモデルを提案する。
我々は、人間の様々なデータセット上でGNPMを評価し、訓練中に高密度の通信を必要とする最先端の手法に匹敵する性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-09-21T19:23:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。