論文の概要: Newton-Puiseux Analysis for Interpretability and Calibration of Complex-Valued Neural Networks
- arxiv url: http://arxiv.org/abs/2504.19176v1
- Date: Sun, 27 Apr 2025 09:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.163774
- Title: Newton-Puiseux Analysis for Interpretability and Calibration of Complex-Valued Neural Networks
- Title(参考訳): 複素値ニューラルネットワークの解釈可能性と校正のためのNewton-Puiseux解析
- Authors: Piotr Migus,
- Abstract要約: 複雑なニューラルネットワーク(CVNN)は、フェーズが重要な場所を抽出するが、そのマルチシート決定曲面は、標準的な説明可能性と校正ツールを損なう。
本稿では,局所的なサロゲートを高不確かさ入力に適合させ,解析的にこのサロゲートを分級数列に分解するemphNewton-Puiseuxフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex-valued neural networks (CVNNs) excel where phase matters, yet their multi-sheeted decision surfaces defy standard explainability and calibration tools. We propose a \emph{Newton-Puiseux} framework that fits a local polynomial surrogate to a high-uncertainty input and analytically decomposes this surrogate into fractional-power series. The resulting Puiseux expansions, dominant Puiseux coefficients, and phase-aligned curvature descriptors deliver closed-form estimates of robustness and over-confidence that gradient - or perturbation-based methods (saliency, LIME, SHAP) cannot provide. On a controlled $\mathbb{C}^2$ helix the surrogate attains RMSE $< 0.09$ while recovering the number of decision sheets; quartic coefficients predict adversarial flip radii within $10^{-3}$. On the real-world MIT-BIH arrhythmia corpus, Puiseux-guided, phase-aware temperature scaling lowers expected calibration error from 0.087 to 0.034, contributing to the advancement of CVNNs. Full code, pre-trained weights, and scripts are at https://github.com/piotrmgs/puiseux-cvnn.
- Abstract(参考訳): 複雑な評価されたニューラルネットワーク(CVNN)は、フェーズが重要な場所を抽出するが、そのマルチシート決定曲面は、標準的な説明可能性とキャリブレーションツールを欠いている。
本稿では,局所多項式を高不確かさ入力に適合させ,このサロゲートを分数列に分解する「emph{Newton-Puiseux}」フレームワークを提案する。
結果のPuiseux展開、支配的なPuiseux係数、位相整列曲率記述子は、勾配-または摂動に基づく方法( Saliency, LIME, SHAP)が提供できないような強靭性および過信性の閉形式推定を提供する。
制御された$\mathbb{C}^2$ヘリックスでは、サロゲートはRMSE$<0.09$に達し、決定シートの数を回復する。
現実のMIT-BIH不整脈コーパスでは、Puiseux誘導型位相認識温度スケーリングにより、期待キャリブレーション誤差が0.087から0.034に低下し、CVNNの進歩に貢献した。
完全なコード、事前訓練されたウェイト、スクリプトはhttps://github.com/piotrmgs/puiseux-cvnn.comにある。
関連論文リスト
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - Approximation Bounds for Transformer Networks with Application to Regression [9.549045683389085]
H"older 関数と Sobolev 関数に対する Transformer ネットワークの近似機能について検討する。
シーケンス・ツー・シーケンス・マッピングを近似した標準トランスフォーマー・ネットワークのための新しい上限を確立する。
トランスフォーマーの自己アテンション層がカラム平均化を行うことができれば,ネットワークはシーケンス・ツー・シーケンスのH"older関数を近似することができることを示す。
論文 参考訳(メタデータ) (2025-04-16T15:25:58Z) - Uncertainty Quantification From Scaling Laws in Deep Neural Networks [0.0]
機械学習の分析から不確かさを定量化することは、物理科学での使用に不可欠である。
平均$mu_mathcalL$と分散$sigma_mathcalL$を多層パーセプトロンのアンサンブルとして計算する。
我々は、MNIST分類、CIFAR分類、カロリーメータエネルギー回帰の3つの課題について、有限幅ネットワークの結果と経験的に比較した。
論文 参考訳(メタデータ) (2025-03-07T21:15:11Z) - Theoretical limits of descending $\ell_0$ sparse-regression ML algorithms [0.0]
本研究では,emphmaximum-likelihood (ML)デコーディングの性能解析プログラムを開発した。
ML性能パラメータの鍵となるのは、残留エンフェロ平均二乗誤差(textbfRMSE$)を発見し、いわゆるエンフェロ遷移(PT)現象を示す。
Fl RDTの具体的実装と実用的妥当性は、典型的には、基礎となる数値評価のサイズのセットを実行する能力に依存している。
論文 参考訳(メタデータ) (2024-10-10T06:33:41Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Risk Bounds for Mixture Density Estimation on Compact Domains via the $h$-Lifted Kullback--Leibler Divergence [2.8074364079901017]
標準KL分散の一般化として、$h$-lifted Kullback--Leibler(KL)分散を導入する。
我々は、対応する最大$h$-lifted chance 推定器の計算手順を開発する。
論文 参考訳(メタデータ) (2024-04-19T02:31:34Z) - Tighter Learning Guarantees on Digital Computers via Concentration of Measure on Finite Spaces [7.373617024876726]
デジタルコンピュータ上での学習モデルに適した一般化の族を$c_m/N1/ (2vee m)_m=1infty$とする。
パラメータ $m$ を$N$ に従って調整すると、実用的なサンプルサイズに対するより厳密な一般化境界が$N$ となる。
一般化境界の族は、有限距離空間における測度集中に対する新しい非漸近結果に基づいて定式化される。
論文 参考訳(メタデータ) (2024-02-08T11:23:11Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Improved techniques for deterministic l2 robustness [63.34032156196848]
畳み込みニューラルネットワーク(CNN)を$l_2$ノルムの下で厳密な1-Lipschitz制約で訓練することは、対向的堅牢性、解釈可能な勾配、安定した訓練に有用である。
我々は,最後の線形層を1重層に置き換えることで,1-Lipschitz CNNのロバスト性を証明する手法を提案する。
我々は,CIFAR-10およびCIFAR-100における標準および証明可能な堅牢な精度の最先端化を図る。
論文 参考訳(メタデータ) (2022-11-15T19:10:12Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
分散還元型ハミルトン・モンテカルロ法 (HMC) の新たなフレームワークを提案し,$L$-smooth および $m$-strongly log-concave 分布からサンプリングする。
本研究では,SAGA法やSVRG法をベースとした非バイアス勾配推定器を用いて,バッチサイズを小さくすることで,高い勾配効率が得られることを示す。
総合的および実世界のベンチマークデータによる実験結果から、我々の新しいフレームワークは、完全な勾配と勾配HMCアプローチを著しく上回っていることが示された。
論文 参考訳(メタデータ) (2021-02-09T02:44:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。