論文の概要: An Automated Reinforcement Learning Reward Design Framework with Large Language Model for Cooperative Platoon Coordination
- arxiv url: http://arxiv.org/abs/2504.19480v1
- Date: Mon, 28 Apr 2025 04:41:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.320959
- Title: An Automated Reinforcement Learning Reward Design Framework with Large Language Model for Cooperative Platoon Coordination
- Title(参考訳): 協調プラトンコーディネーションのための大規模言語モデルを用いた強化学習リワード設計フレームワーク
- Authors: Dixiao Wei, Peng Yi, Jinlong Lei, Yiguang Hong, Yuchuan Du,
- Abstract要約: 強化学習(RL)は小隊調整問題において優れた意思決定可能性を示した。
複雑な小隊調整問題を解くためにRL訓練を指導する優れた性能報酬関数を見つけることは依然として困難である。
報奨関数発見を体系的に自動化するLarge Language Model (LLM) ベースのPlatoon coordinate Reward Design (PCRD) フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.669043457982404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has demonstrated excellent decision-making potential in platoon coordination problems. However, due to the variability of coordination goals, the complexity of the decision problem, and the time-consumption of trial-and-error in manual design, finding a well performance reward function to guide RL training to solve complex platoon coordination problems remains challenging. In this paper, we formally define the Platoon Coordination Reward Design Problem (PCRDP), extending the RL-based cooperative platoon coordination problem to incorporate automated reward function generation. To address PCRDP, we propose a Large Language Model (LLM)-based Platoon coordination Reward Design (PCRD) framework, which systematically automates reward function discovery through LLM-driven initialization and iterative optimization. In this method, LLM first initializes reward functions based on environment code and task requirements with an Analysis and Initial Reward (AIR) module, and then iteratively optimizes them based on training feedback with an evolutionary module. The AIR module guides LLM to deepen their understanding of code and tasks through a chain of thought, effectively mitigating hallucination risks in code generation. The evolutionary module fine-tunes and reconstructs the reward function, achieving a balance between exploration diversity and convergence stability for training. To validate our approach, we establish six challenging coordination scenarios with varying complexity levels within the Yangtze River Delta transportation network simulation. Comparative experimental results demonstrate that RL agents utilizing PCRD-generated reward functions consistently outperform human-engineered reward functions, achieving an average of 10\% higher performance metrics in all scenarios.
- Abstract(参考訳): 強化学習(RL)は小隊調整問題において優れた意思決定可能性を示した。
しかし、調整目標の変動、決定問題の複雑さ、手動設計における試行錯誤の時間消費などにより、複雑な小隊調整問題を解決するためにRLトレーニングを誘導する優れた性能の報奨関数を見つけることは依然として困難である。
本稿では,RLに基づく協調小隊調整問題を拡張し,自動報酬関数生成を取り入れたPCRDP(Platoon Coordination Reward Design Problem)を正式に定義する。
PCRDPに対処するために,Large Language Model (LLM) ベースのPlatoon coordinate Reward Design (PCRD) フレームワークを提案する。
本手法では、まず環境コードとタスク要求に基づいて報酬関数をAnalytic and Initial Reward (AIR)モジュールで初期化し、その後、進化的モジュールによるトレーニングフィードバックに基づいて繰り返し最適化する。
AIRモジュールはLLMに、思考の連鎖を通じてコードとタスクの理解を深め、コード生成における幻覚のリスクを効果的に軽減するように誘導します。
進化モジュールは、探索の多様性と訓練の収束安定性のバランスを保ち、報酬関数を微調整し再構築する。
提案手法の有効性を検証するため,ヤンツェ川デルタ交通ネットワークシミュレーションにおいて,複雑度が異なる6つの困難な調整シナリオを構築した。
比較実験により,PCRD生成報酬関数を用いたRLエージェントは,すべてのシナリオにおいて平均10倍の性能測定値を達成するとともに,人間工学報酬関数より一貫して優れることが示された。
関連論文リスト
- SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができない。
本稿では,新たなRLアルゴリズムであるSWEET-RLを提案する。
我々の実験は、SWEET-RLがコルベンチにおける成功率と勝利率を、他の最先端マルチターンRLアルゴリズムと比較して6%向上することを示した。
論文 参考訳(メタデータ) (2025-03-19T17:55:08Z) - Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
大規模言語モデル (LLM) は強化学習 (RL) を通じて構造化タスクに大きく進歩した。
チャットボットやコンテンツ生成といった幅広い分野にRLを適用することは、ユニークな課題だ。
埋め込み型報酬モデルを用いた既存の報酬モデルアンサンブル研究の再現事例について述べる。
論文 参考訳(メタデータ) (2025-02-04T19:37:35Z) - Adaptive Reward Design for Reinforcement Learning in Complex Robotic Tasks [2.3031174164121127]
本稿では,RLエージェントにインセンティブを与える報酬関数群を提案する。
学習過程における報酬関数を動的に更新する適応型報酬生成手法を開発した。
様々なRLに基づくロボットタスクの実験結果から,提案手法が様々なRLアルゴリズムと互換性があることが示されている。
論文 参考訳(メタデータ) (2024-12-14T18:04:18Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
ビームフォーミング,スペクトルアロケーション,リモートユーザ機器(RUE)アソシエイトを最適化するために,GAILを利用した新しいポリシー学習手法を提案する。
手動チューニングなしで報酬関数を自動的に学習するために、逆RL(IRL)を用いる。
提案手法は従来のRL手法よりも優れており,コンバージェンスと報酬値の14.6%の改善が達成されている。
論文 参考訳(メタデータ) (2024-09-27T13:05:02Z) - Beyond Human Preferences: Exploring Reinforcement Learning Trajectory Evaluation and Improvement through LLMs [12.572869123617783]
強化学習(Reinforcement Learning, RL)は、複雑なゲームタスクにおけるポリシートラジェクトリを評価する上での課題である。
PbRLは、人間の嗜好を重要な報酬信号として活用する先駆的なフレームワークである。
LLM4PG という LLM 対応自動選好生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T04:21:24Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数と人間の嗜好の相違は、現実世界で破滅的な結果をもたらす可能性がある。
近年の手法は、人間の嗜好から報酬関数を学習することで、不適応を緩和することを目的としている。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
ロバスト強化学習(RL)は、モデルエラーや敵攻撃によるパフォーマンス向上に重点を置いている。
既存の文献の多くは、解の概念としてナッシュ平衡を伴うゼロサム同時ゲームとして RARL をモデル化している。
RRL-Stackと呼ばれる一般のStackelbergゲームモデルである、ロバストなRLの階層的な新しい定式化を導入する。
論文 参考訳(メタデータ) (2022-02-19T03:44:05Z) - Collision-Free Flocking with a Dynamic Squad of Fixed-Wing UAVs Using
Deep Reinforcement Learning [2.555094847583209]
深層強化学習(DRL)による分散型リーダ・フォロワリング制御問題に対処する。
我々は,すべてのフォロワーに対して共有制御ポリシーを学習するための新しい強化学習アルゴリズムCACER-IIを提案する。
その結果、可変長系状態を固定長埋め込みベクトルに符号化することができ、学習されたDRLポリシーをフォロワーの数や順序と独立にすることができる。
論文 参考訳(メタデータ) (2021-01-20T11:23:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。