論文の概要: Measuring Train Driver Performance as Key to Approval of Driverless Trains
- arxiv url: http://arxiv.org/abs/2504.19735v2
- Date: Tue, 29 Apr 2025 19:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.426038
- Title: Measuring Train Driver Performance as Key to Approval of Driverless Trains
- Title(参考訳): 無人列車の承認鍵としての列車運転性能の測定
- Authors: Rustam Tagiew, Prasannavenkatesh Balaji,
- Abstract要約: この記事では、制御された実験から711人の列車運転手のパフォーマンス測定結果の、新しい公開および匿名化データセットを提供する。
本論文の目的は, 研究, 標準化, 規制のための提示されたデータセットを, 曖昧かつ徹底的に記述することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Points 2.1.4(b), 2.4.2(b) and 2.4.3(b) in Annex I of Implementing Regulation (EU) No. 402/2013 allow a simplified approach for the safety approval of computer vision systems for driverless trains, if they have 'similar' functions and interfaces as the replaced human driver. The human driver is not replaced one-to-one by a technical system - only a limited set of cognitive functions are replaced. However, performance in the most challenging function, obstacle detection, is difficult to quantify due to the deficiency of published measurement results. This article summarizes the data published so far. This article also goes a long way to remedy this situation by providing a new public and anonymized dataset of 711 train driver performance measurements from controlled experiments. The measurements are made for different speeds, obstacle sizes, train protection systems and obstacle color contrasts respectively. The measured values are reaction time and distance to the obstacle. The goal of this paper is an unbiased and exhaustive description of the presented dataset for research, standardization and regulation. The dataset with supplementing information and literature is published on https://data.fid-move.de/de/dataset/atosensedata
- Abstract(参考訳): 点 2.1.4(b), 2.4.2(b) および 2.4.3(b) は、Annex I of Implementing Regulation (EU) No. 402/2013において、ドライバーレス列車のコンピュータビジョンシステムの安全性を保証するための簡易なアプローチである。
人間のドライバーは技術的システムによって1対1で置き換えられません。
しかしながら、最も困難な関数である障害物検出の性能は、公表された測定結果の欠如により定量化が難しい。
この記事では、これまでに公開されたデータを要約する。
この記事では、制御された実験から711人のトレインドライバーのパフォーマンス測定を、新たに公開して匿名化したデータセットを提供することによって、この状況を改善するための長い道のりを歩みます。
測定は、それぞれ異なる速度、障害物サイズ、列車防護システム、障害物色コントラストに対して行われる。
測定値は、障害に対する反応時間と距離である。
本論文の目的は, 研究, 標準化, 規制のための提示されたデータセットを, 曖昧かつ徹底的に記述することである。
補足情報と文献を含むデータセットはhttps://data.fid-move.de/dataset/atosensedataで公開されている。
関連論文リスト
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
軌道予測は、自動運転車における計画の安全性と効率に不可欠である。
現在のモデルでは、複雑な交通規則と潜在的な車両の動きを完全に捉えることができないことが多い。
本研究は, オフロード損失, 方向整合誤差, ダイバーシティ損失の3つの新しい損失関数を紹介する。
論文 参考訳(メタデータ) (2024-11-29T14:47:08Z) - Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning [13.613407983544427]
車両内のカメラ位置の変化に耐えられるような頑健なモデルを導入する。
我々のドライバ行動監視ネットワーク(DBMNet)は軽量なバックボーンに依存し、アンタングルメントモジュールを統合する。
100-Driverデータセットの夜間および夜間のサブセットで行った実験は、我々のアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-11-20T10:27:12Z) - Learning 3D Perception from Others' Predictions [64.09115694891679]
本研究では,3次元物体検出装置を構築するための新たなシナリオについて検討する。
例えば、自動運転車が新しいエリアに入ると、その領域に最適化された検出器を持つ他の交通参加者から学ぶことができる。
論文 参考訳(メタデータ) (2024-10-03T16:31:28Z) - Data Limitations for Modeling Top-Down Effects on Drivers' Attention [12.246649738388388]
運転は視覚運動のタスクであり、つまり、ドライバーが見ているものと何をするかの間には関連がある。
ドライバーの視線の一部のモデルは、ドライバーの行動によるトップダウン効果を考慮に入れている。
大多数は人間の視線と運転映像のボトムアップ相関しか学ばない。
論文 参考訳(メタデータ) (2024-04-12T18:23:00Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Mainline Automatic Train Horn and Brake Performance Metric [0.0]
本稿では,ドライバ・オン・ボード型認識システムのための主線路指向性能指標の導入を論じる。
下位機能に対するサブメトリックは、知覚システムの比較を容易にし、人間の運転性能の測定をガイドするべきである。
論文 参考訳(メタデータ) (2023-07-05T18:33:26Z) - Driver Profiling and Bayesian Workload Estimation Using Naturalistic
Peripheral Detection Study Data [40.43737902900321]
性能データを駆動する作業負荷推定の問題に対処する。
心的負荷を誘発する主要な環境要因をビデオ解析により同定する。
教師付き学習フレームワークは、彼らが経験した平均的なワークロードに基づいて、プロファイルドライバに導入される。
ベイズフィルタリング手法は、ドライバーの即時作業負荷である(ほぼ)リアルタイムに逐次推定するために提案される。
論文 参考訳(メタデータ) (2023-03-26T13:15:44Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z) - Towards Driving-Oriented Metric for Lane Detection Models [19.81163190104571]
我々は、車線検出のための2つの新しい駆動指向メトリクスを設計する:エンド・ツー・エンド横方向偏差距離(E2E-LD)とフレームごとの擬似横方向偏差距離(PSLD)。
提案手法の有効性を評価するため,TuSimpleデータセットと新たに構築したComma2k19-LDの4種類のレーン検出手法を用いて大規模実験を行った。
論文 参考訳(メタデータ) (2022-03-31T07:24:44Z) - Does Redundancy in AI Perception Systems Help to Test for Super-Human
Automated Driving Performance? [6.445605125467575]
この研究は、実際のシステムレベルでの直接的な統計的証拠を提供することはほとんど不可能である、と再考する。
したがって、一般的に使われている戦略は、十分なサブシステムの性能の証明とともに冗長性を使うことである。
論文 参考訳(メタデータ) (2021-12-09T08:40:31Z) - An Efficient Approach for Anomaly Detection in Traffic Videos [30.83924581439373]
本稿では,エッジデバイスで動作可能な映像異常検出システムのための効率的な手法を提案する。
提案手法は,シーンの変化を検出し,破損したフレームを除去するプリプロセッシングモジュールを含む。
また,新しいシーンに迅速に適応し,類似度統計量の変化を検出するシーケンシャルな変化検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-20T04:43:18Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。