論文の概要: Towards AI-Driven Policing: Interdisciplinary Knowledge Discovery from Police Body-Worn Camera Footage
- arxiv url: http://arxiv.org/abs/2504.20007v1
- Date: Mon, 28 Apr 2025 17:25:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.536472
- Title: Towards AI-Driven Policing: Interdisciplinary Knowledge Discovery from Police Body-Worn Camera Footage
- Title(参考訳): AI-Driven Policingに向けて: 警察のボディウォーンカメラフットプリントから学際的知識発見
- Authors: Anita Srbinovska, Angela Srbinovska, Vivek Senthil, Adrian Martin, John McCluskey, Ernest Fokoué,
- Abstract要約: 本稿では,高度な人工知能(AI)と統計機械学習(ML)技術を用いて,警察用ボディウォーンカメラ(BWC)映像を解析するための新しい枠組みを提案する。
我々の目標は、尊敬、軽視、エスカレーション、エスカレーションといった重要な行動力学を識別するために、警察官と民間人の相互作用パターンを検出し、分類し、分析することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel interdisciplinary framework for analyzing police body-worn camera (BWC) footage from the Rochester Police Department (RPD) using advanced artificial intelligence (AI) and statistical machine learning (ML) techniques. Our goal is to detect, classify, and analyze patterns of interaction between police officers and civilians to identify key behavioral dynamics, such as respect, disrespect, escalation, and de-escalation. We apply multimodal data analysis by integrating video, audio, and natural language processing (NLP) techniques to extract meaningful insights from BWC footage. We present our methodology, computational techniques, and findings, outlining a practical approach for law enforcement while advancing the frontiers of knowledge discovery from police BWC data.
- Abstract(参考訳): 本稿では,先進人工知能(AI)と統計機械学習(ML)技術を用いて,ロチェスター警察署(RPD)のBWC映像を解析するための新たな学際的枠組みを提案する。
我々の目標は、尊敬、軽視、エスカレーション、エスカレーションといった重要な行動力学を識別するために、警察官と民間人の相互作用パターンを検出し、分類し、分析することである。
BWC映像から有意義な洞察を抽出するために,ビデオ,音声,自然言語処理(NLP)技術を統合したマルチモーダルデータ解析を適用した。
本稿では,警察のBWCデータから知識発見のフロンティアを推し進めつつ,法執行の実践的アプローチを概説する。
関連論文リスト
- Advancing Crime Linkage Analysis with Machine Learning: A Comprehensive Review and Framework for Data-Driven Approaches [0.0]
犯罪リンケージ(英: Crime linkage)とは、犯罪行為データを分析して、一対または一対の犯罪事件が一連の犯罪に関係しているかどうかを判断する過程である。
本研究の目的は,犯罪リンクにおける機械学習アプローチが直面する課題を理解し,将来的なデータ駆動手法の基盤知識を支援することである。
論文 参考訳(メタデータ) (2024-10-30T18:22:45Z) - A Multi-Perspective Machine Learning Approach to Evaluate Police-Driver
Interaction in Los Angeles [18.379058918856717]
州内で最も目に見えて接触した警察官は、交通停止中に年間2000万回以上、市民と交流している。
ボディウーンカメラ(BWC)は、警察の説明責任を高め、警察と公共の相互作用を改善する手段として用いられる。
本稿では、このBWC映像から音声、ビデオ、および転写情報を分析するために、新しいマルチパースペクティブ・マルチモーダル機械学習(ML)ツールを開発するためのアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-24T19:56:20Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Datastore Design for Analysis of Police Broadcast Audio at Scale [0.0]
シカゴ警察署(CPD)の分析における音声感情認識(SER)の実現に向けた予備研究について述べる。
合成音声ファイルのマルチモーダル解析を可能にするデータストアのパイプライン作成を実演する。
論文 参考訳(メタデータ) (2023-10-25T19:52:19Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
マルチオブジェクトトラッキング(MOT)は、動画フレーム全体で対象物を関連付け、移動軌道全体を取得することを目的としている。
埋め込み法はMOTにおける物体の位置推定と時間的同一性関連において重要な役割を担っている。
まず 7 つの異なる視点からMOT への埋め込み手法の奥行き解析による包括的概要を述べる。
論文 参考訳(メタデータ) (2022-05-22T06:54:33Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - MAIR: Framework for mining relationships between research articles,
strategies, and regulations in the field of explainable artificial
intelligence [2.280298858971133]
研究論文やAI関連の政策に対する規制の影響のダイナミクスを理解することが不可欠である。
本稿では,AI関連政策文書とXAI研究論文の共同分析のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-29T20:41:17Z) - Multi-Modal Video Forensic Platform for Investigating Post-Terrorist
Attack Scenarios [55.82693757287532]
大規模ビデオ分析プラットフォーム(VAP)は、容疑者を特定し証拠を確保するために法執行機関(LEA)を支援する。
本稿では,視覚・音声分析モジュールを統合し,監視カメラからの情報と目撃者からの映像アップロードを融合するビデオ分析プラットフォームを提案する。
論文 参考訳(メタデータ) (2020-04-02T14:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。