論文の概要: Better To Ask in English? Evaluating Factual Accuracy of Multilingual LLMs in English and Low-Resource Languages
- arxiv url: http://arxiv.org/abs/2504.20022v1
- Date: Mon, 28 Apr 2025 17:48:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.545505
- Title: Better To Ask in English? Evaluating Factual Accuracy of Multilingual LLMs in English and Low-Resource Languages
- Title(参考訳): 英語と低リソース言語における多言語LLMの精度評価
- Authors: Pritika Rohera, Chaitrali Ginimav, Gayatri Sawant, Raviraj Joshi,
- Abstract要約: 我々は,多言語大言語モデル (LLM) の事実的精度を,英語とインド語のパフォーマンスを比較して評価する。
この結果から,LLMは英語の文脈に根ざした質問に対しても,優れた性能を示すことが示唆された。
特に、低リソースのIndic言語で生成された応答における幻覚の傾向を観察する。
- 参考スコア(独自算出の注目度): 0.4499833362998489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Large Language Models (LLMs) have demonstrated significant effectiveness across various languages, particularly in high-resource languages such as English. However, their performance in terms of factual accuracy across other low-resource languages, especially Indic languages, remains an area of investigation. In this study, we assess the factual accuracy of LLMs - GPT-4o, Gemma-2-9B, Gemma-2-2B, and Llama-3.1-8B - by comparing their performance in English and Indic languages using the IndicQuest dataset, which contains question-answer pairs in English and 19 Indic languages. By asking the same questions in English and their respective Indic translations, we analyze whether the models are more reliable for regional context questions in Indic languages or when operating in English. Our findings reveal that LLMs often perform better in English, even for questions rooted in Indic contexts. Notably, we observe a higher tendency for hallucination in responses generated in low-resource Indic languages, highlighting challenges in the multilingual understanding capabilities of current LLMs.
- Abstract(参考訳): 多言語大言語モデル (LLM) は様々な言語、特に英語のような高リソース言語において大きな効果を発揮している。
しかしながら、他の低リソース言語、特にIndic言語における実際の精度の点でのパフォーマンスは依然として調査の領域である。
本研究では,英語と英語の問合せ対を含むIndicQuestデータセットを用いて,LLM(GPT-4o, Gemma-2-9B, Gemma-2-2B, Llama-3.1-8B)の実際の精度を評価する。
同じ質問を英語で、そしてそれぞれのIndic翻訳で行うことによって、これらのモデルが、Indic言語における地域文脈の質問に対してより信頼性が高いか、それとも英語で操作するかを分析する。
この結果から,LLMは英語の文脈に根ざした質問に対しても,優れた性能を示すことが示唆された。
特に、低リソースのIndic言語で生成された応答の幻覚化傾向が高く、現在のLLMの多言語理解能力の課題を浮き彫りにしている。
関連論文リスト
- PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts [79.84059473102778]
PolyMathは18の言語と4つの難易度をカバーする多言語数学的推論ベンチマークである。
我々のベンチマークは、包括性、言語多様性、高品質な翻訳の難しさを保証する。
論文 参考訳(メタデータ) (2025-04-25T15:39:04Z) - Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Better to Ask in English: Evaluation of Large Language Models on English, Low-resource and Cross-Lingual Settings [12.507989493130175]
GPT-4, Llama 2 および Gemini は, 東南アジアの他の低リソース言語と比較して, 英語での有効性が評価されている。
GPT-4はLlama 2とGeminiを5つのプロンプト設定と全言語で上回ったことを示唆している。
論文 参考訳(メタデータ) (2024-10-17T02:12:30Z) - Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings [12.507989493130175]
大規模言語モデル (LLM) は自然言語処理 (NLP) に大きな関心を寄せている。
近年の研究では、低リソース言語におけるLLMの限界が強調されている。
英語からバングラ語、ヒンディー語、ウルドゥー語に翻訳することで、感情と憎悪の音声タスクのデータセットを提示する。
論文 参考訳(メタデータ) (2024-08-05T05:09:23Z) - INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages [25.402797722575805]
インデックスQAベンチマーク(Indic QA Benchmark)は、インドの主要言語11言語を対象にした、文脈に基づく質問応答のためのデータセットである。
評価の結果,学習データに強い英語バイアスがあるため,低資源言語では弱い性能を示した。
また、入力を英語に翻訳して処理し、その結果をソース言語に変換して出力するTranslate Testパラダイムについても検討した。
論文 参考訳(メタデータ) (2024-07-18T13:57:16Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - CaLMQA: Exploring culturally specific long-form question answering across 23 languages [58.18984409715615]
CaLMQAは、23の言語にまたがる1.5Kの文化的に特定の質問のコレクションであり、51の文化的に翻訳された質問は、英語から22の言語に翻訳されている。
コミュニティのWebフォーラムから自然に発生する質問を収集し、ネイティブスピーカーを雇い、FijianやKirndiといった未調査言語をカバーする質問を書いています。
私たちのデータセットには、文化的トピック(伝統、法律、ニュースなど)とネイティブスピーカーの言語使用を反映した、多種多様な複雑な質問が含まれています。
論文 参考訳(メタデータ) (2024-06-25T17:45:26Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、ほとんどは不均衡なトレーニングコーパスのため英語中心である。
実世界のユーザクエリと非英語中心のLLMに評価を拡張し、多言語性能のより広範な評価を提供する。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Could We Have Had Better Multilingual LLMs If English Was Not the Central Language? [4.655168524016426]
大規模言語モデル(LLM)は、トレーニング対象の言語に対して強力な機械翻訳能力を示す。
我々の研究は、Llama2の翻訳能力について論じている。
実験の結果,7B Llama2モデルはこれまでに見たすべての言語に翻訳すると10 BLEU以上になることがわかった。
論文 参考訳(メタデータ) (2024-02-21T16:32:38Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。