論文の概要: INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
- arxiv url: http://arxiv.org/abs/2407.13522v2
- Date: Mon, 24 Feb 2025 05:37:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:47:10.688804
- Title: INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
- Title(参考訳): INDIC QA BENCHMARK:LLMの質問応答能力評価のための多言語ベンチマーク
- Authors: Abhishek Kumar Singh, Vishwajeet kumar, Rudra Murthy, Jaydeep Sen, Ashish Mittal, Ganesh Ramakrishnan,
- Abstract要約: インデックスQAベンチマーク(Indic QA Benchmark)は、インドの主要言語11言語を対象にした、文脈に基づく質問応答のためのデータセットである。
評価の結果,学習データに強い英語バイアスがあるため,低資源言語では弱い性能を示した。
また、入力を英語に翻訳して処理し、その結果をソース言語に変換して出力するTranslate Testパラダイムについても検討した。
- 参考スコア(独自算出の注目度): 25.402797722575805
- License:
- Abstract: Large Language Models (LLMs) perform well on unseen tasks in English, but their abilities in non English languages are less explored due to limited benchmarks and training data. To bridge this gap, we introduce the Indic QA Benchmark, a large dataset for context grounded question answering in 11 major Indian languages, covering both extractive and abstractive tasks. Evaluations of multilingual LLMs, including instruction finetuned versions, revealed weak performance in low resource languages due to a strong English language bias in their training data. We also investigated the Translate Test paradigm,where inputs are translated to English for processing and the results are translated back into the source language for output. This approach outperformed multilingual LLMs, particularly in low resource settings. By releasing Indic QA, we aim to promote further research into LLMs question answering capabilities in low resource languages. This benchmark offers a critical resource to address existing limitations and foster multilingual understanding.
- Abstract(参考訳): LLM(Large Language Models)は、英語で見えないタスクでうまく機能するが、ベンチマークやトレーニングデータのために、非英語言語でのそれらの能力は調査されていない。
このギャップを埋めるため、インドの主要言語11言語におけるコンテキストベース質問応答のための大規模なデータセットであるIndic QA Benchmarkを導入し、抽出タスクと抽象タスクの両方をカバーした。
命令微調整版を含む多言語LLMの評価は、学習データに強い英語バイアスがあるため、低リソース言語では弱い性能を示した。
また、入力を英語に翻訳して処理し、その結果をソース言語に変換して出力するTranslate Testパラダイムについても検討した。
このアプローチは、特にリソース設定の低さにおいて、多言語LLMよりも優れていた。
Indic QA をリリースすることにより,低リソース言語における LLM の質問応答能力に関するさらなる研究を促進することを目指している。
このベンチマークは、既存の制限に対処し、多言語理解を促進するための重要なリソースを提供する。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Cross-lingual Transfer for Automatic Question Generation by Learning Interrogative Structures in Target Languages [6.635572580071933]
本稿では,モノリンガル,並列,ラベル付きデータを対象言語で必要とせずに動作可能な,単純かつ効率的なXLT-QG法を提案する。
提案手法は,GPT-3.5-turboに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-10-04T07:29:35Z) - Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
本稿では,MultiLingual Needle-in-a-Haystack(MLNeedle)テストを導入する。
我々はMLNeedleの4つの最先端の大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2024-08-19T17:02:06Z) - NativQA: Multilingual Culturally-Aligned Natural Query for LLMs [12.35947908812959]
本研究では,言語に依存しないフレームワークであるNativQAを提案し,文化的・地域的に整合したQAデータセットをネイティブ言語でシームレスに構築する。
7言語で64kの注釈付きQAペアからなる多言語自然QAデータセットmnqaを設計することで,提案手法の有効性を実証する。
また,低リソースおよび方言に富んだ言語を対象とした微調整データ構築におけるフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-07-13T09:34:00Z) - mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans [27.84922167294656]
言語固有の知識と常識のためにデータセットをキュレートすることは困難である。
現在の多言語データセットの多くは翻訳によって作成されており、そのような言語固有の側面を評価できない。
CSQAの構築プロセスに基づくマルチ言語コモンセンスQA(mCSQA)を提案する。
論文 参考訳(メタデータ) (2024-06-06T16:14:54Z) - From Multiple-Choice to Extractive QA: A Case Study for English and Arabic [51.13706104333848]
既存の多言語データセットを新しいNLPタスクに再利用する可能性について検討する。
本稿では,英語および現代標準アラビア語に対するアノテーションガイドラインと並列EQAデータセットを提案する。
我々は、残りの120のBELEBELE言語変種に対して、他の人が我々のアプローチを適用するのを助けることを目指しており、その多くがリソース不足と見なされている。
論文 参考訳(メタデータ) (2024-04-26T11:46:05Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
既存の大きな言語モデルは、異なる言語間で異なる能力を示す。
本稿では,言語間のセマンティックアライメントを構築することで,英語以外の言語に事前学習したLLMを強化する。
論文 参考訳(メタデータ) (2023-08-09T13:32:06Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。