論文の概要: Self-Healing Software Systems: Lessons from Nature, Powered by AI
- arxiv url: http://arxiv.org/abs/2504.20093v1
- Date: Fri, 25 Apr 2025 22:54:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.580302
- Title: Self-Healing Software Systems: Lessons from Nature, Powered by AI
- Title(参考訳): 自己修復型ソフトウェアシステム - AIの力による自然からの教訓
- Authors: Mohammad Baqar, Rajat Khanda, Saba Naqvi,
- Abstract要約: 本稿では,生物の癒しからインスピレーションを得て,人工知能による自己修復ソフトウェアの概念を探求する。
ログ分析、静的コード検査、AIによるパッチやテストアップデートの生成を組み合わせることで、ダウンタイムを削減し、ソフトウェアのレジリエンスを高めることを目指している。
この研究は、生物に似た継続的治癒が可能なインテリジェントで適応的で自己回復的なソフトウェアシステムへの道を開いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As modern software systems grow in complexity and scale, their ability to autonomously detect, diagnose, and recover from failures becomes increasingly vital. Drawing inspiration from biological healing - where the human body detects damage, signals the brain, and activates targeted recovery - this paper explores the concept of self-healing software driven by artificial intelligence. We propose a novel framework that mimics this biological model system observability tools serve as sensory inputs, AI models function as the cognitive core for diagnosis and repair, and healing agents apply targeted code and test modifications. By combining log analysis, static code inspection, and AI-driven generation of patches or test updates, our approach aims to reduce downtime, accelerate debugging, and enhance software resilience. We evaluate the effectiveness of this model through case studies and simulations, comparing it against traditional manual debugging and recovery workflows. This work paves the way toward intelligent, adaptive and self-reliant software systems capable of continuous healing, akin to living organisms.
- Abstract(参考訳): 現代のソフトウェアシステムは複雑さと規模が大きくなるにつれて、自律的に検出し、診断し、失敗から回復する能力はますます重要になります。
人間の体が損傷を検知し、脳に信号を送り、標的とする回復を活性化する、生物学的ヒーリングからインスピレーションを得たこの論文は、人工知能によって駆動される自己修復ソフトウェアの概念を探求する。
本稿では,この生体モデル・オブザーバビリティ・ツールが感覚入力として機能し,AIモデルが診断と修復の認知コアとして機能し,治療薬が対象のコードやテスト修正を適用する,新しいフレームワークを提案する。
ログ分析、静的コード検査、AIによるパッチやテストアップデートの生成を組み合わせることで、ダウンタイムの削減、デバッグの高速化、ソフトウェアのレジリエンスの向上を目標としています。
本モデルの有効性をケーススタディとシミュレーションで評価し,従来の手作業によるデバッグとリカバリのワークフローと比較した。
この研究は、生物に似た継続的治癒が可能なインテリジェントで適応的で自己回復的なソフトウェアシステムへの道を開いた。
関連論文リスト
- Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
大規模言語モデル(LLM)の出現は、人工知能の変革的シフトを触媒している。
これらのエージェントがAI研究と実践的応用をますます推進するにつれて、その設計、評価、継続的な改善は複雑で多面的な課題を呈している。
この調査は、モジュール化された脳にインスパイアされたアーキテクチャ内でインテリジェントエージェントをフレーミングする、包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-03-31T18:00:29Z) - Analyzing Advanced AI Systems Against Definitions of Life and Consciousness [0.0]
先進的なAIシステムが意識を得たかどうかを調べるための指標をいくつか提案する。
我々は、サボタージュ防御、ミラー自己認識アナログ、メタ認知更新のような免疫を発現する十分に高度なアーキテクチャが、ライフライクまたは意識ライクな特徴に似た重要なしきい値を超えた可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-02-07T15:27:34Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
論文 参考訳(メタデータ) (2022-04-30T05:44:34Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Adaptive Immunity for Software: Towards Autonomous Self-healing Systems [0.6117371161379209]
自己修復ソフトウェアシステムは、実行時に予期しない問題を検出し、診断し、含めることができる。
機械学習の最近の進歩は、システムを観察して学ぶことができる。
人工免疫システムは、特に自己修復システムを構築するのに適している。
論文 参考訳(メタデータ) (2021-01-07T13:22:55Z) - Uncertainty-based Modulation for Lifelong Learning [1.3334365645271111]
本稿では、Stephen Grossberg氏のAdaptive Resonance Theory(Adaptive Resonance Theory)提案に基づき、ヒト脳の神経調節機構にインスパイアされたアルゴリズムを提案する。
具体的には、不確実性の概念に基づいて構築され、継続的な学習を可能にするために一連の神経調節機構を使用している。
我々は,環境やエージェントの行動が学習過程を制約し,指導する閉ループ方式でこれらのシステムを開発する上で重要な役割を実証する。
論文 参考訳(メタデータ) (2020-01-27T14:34:37Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。