論文の概要: Analyzing Advanced AI Systems Against Definitions of Life and Consciousness
- arxiv url: http://arxiv.org/abs/2502.05007v1
- Date: Fri, 07 Feb 2025 15:27:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:56:42.728252
- Title: Analyzing Advanced AI Systems Against Definitions of Life and Consciousness
- Title(参考訳): 生活と意識の定義に対する高度なAIシステムの解析
- Authors: Azadeh Alavi, Hossein Akhoundi, Fatemeh Kouchmeshki,
- Abstract要約: 先進的なAIシステムが意識を得たかどうかを調べるための指標をいくつか提案する。
我々は、サボタージュ防御、ミラー自己認識アナログ、メタ認知更新のような免疫を発現する十分に高度なアーキテクチャが、ライフライクまたは意識ライクな特徴に似た重要なしきい値を超えた可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Could artificial intelligence ever become truly conscious in a functional sense; this paper explores that open-ended question through the lens of Life, a concept unifying classical biological criteria (Oxford, NASA, Koshland) with empirical hallmarks such as adaptive self maintenance, emergent complexity, and rudimentary self referential modeling. We propose a number of metrics for examining whether an advanced AI system has gained consciousness, while emphasizing that we do not claim all AI stems can become conscious. Rather, we suggest that sufficiently advanced architectures exhibiting immune like sabotage defenses, mirror self-recognition analogs, or meta-cognitive updates may cross key thresholds akin to life-like or consciousness-like traits. To demonstrate these ideas, we start by assessing adaptive self-maintenance capability, and introduce controlled data corruption sabotage into the training process. The result demonstrates AI capability to detect these inconsistencies and revert or self-correct analogous to regenerative biological processes. We also adapt an animal-inspired mirror self recognition test to neural embeddings, finding that partially trained CNNs can distinguish self from foreign features with complete accuracy. We then extend our analysis by performing a question-based mirror test on five state-of-the-art chatbots (ChatGPT4, Gemini, Perplexity, Claude, and Copilot) and demonstrated their ability to recognize their own answers compared to those of the other chatbots.
- Abstract(参考訳): この論文は、古典的な生物学的基準(Oxford, NASA, Koshland)を適応的自己維持、創発的複雑性、初歩的自己参照モデリングといった実証的な指標で統一する概念である。
先進的なAIシステムが意識を得たかどうかを調べるための指標をいくつか提案する。
むしろ、サボタージュ防御、ミラー自己認識アナログ、メタ認知の更新のような免疫を示す十分に高度なアーキテクチャは、ライフライクまたは意識ライクな特徴に似た重要なしきい値を越える可能性があることを示唆している。
これらのアイデアを実証するために、適応的な自己維持能力の評価から始め、トレーニングプロセスに制御されたデータ破壊サボタージュを導入します。
その結果、AIはこれらの不整合を検出し、再生生物学的プロセスに類似した逆転または自己修正を行うことができることを示した。
また、動物にインスパイアされたミラー自己認識テストを神経埋め込みに適用し、部分的に訓練されたCNNが、完全な精度で自己を外国の特徴と区別できることを見出した。
次に,5つの最先端チャットボット(ChatGPT4,Gemini,Perplexity,Claude,Copilot)で質問ベースのミラーテストを実施し,他のチャットボットと比較して,自身の回答を認識する能力を示した。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
論文 参考訳(メタデータ) (2024-09-18T06:06:13Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
進化の観点から,人工意識の発達に関する問題を分析する。
我々は、人間の脳の進化と、その意識との関係を参照モデルとして捉えている。
我々は,AIの認知処理における共通点と,人間の意識経験との違いを明確にすることを提案する。
論文 参考訳(メタデータ) (2024-04-18T12:59:44Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
現在のインテリジェンステストはすべて、インテリジェンスの存在や欠如を示すには不十分である、と我々は主張する。
人工自己認識のための新しい手法を提案し,その実装の概要を述べる。
論文 参考訳(メタデータ) (2023-06-29T18:58:01Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Self-mediated exploration in artificial intelligence inspired by
cognitive psychology [1.3351610617039975]
物理環境の探索は、データ取得に必須の先駆者であり、分析的または直接的な試行を通じて知識生成を可能にする。
この研究は、人間の行動と人工エージェントを結び付け、自己開発を支援する。
その後の研究では、人工エージェントが収束に向けて繰り返し実施される以前のヒトの治験を反映するように設計されている。
その結果、ほとんどのエージェントが学んだ因果関係が、内部の状態と、人間に報告されたものと一致するための探索の間にあることが示された。
論文 参考訳(メタデータ) (2023-02-13T18:20:44Z) - Conscious AI [6.061244362532694]
人工知能の最近の進歩は、分類タスクの人間規模のスピードと精度を達成しました。
現在のシステムは、パターンを認識して分類する必要はない。
AIが直感や共感を必要とするより複雑なタスクに進むためには、メタシンキング、創造性、共感などの能力が人間の自己認識や意識に似ています。
論文 参考訳(メタデータ) (2021-05-12T15:53:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。