論文の概要: Enhancing Cell Counting through MLOps: A Structured Approach for Automated Cell Analysis
- arxiv url: http://arxiv.org/abs/2504.20126v1
- Date: Mon, 28 Apr 2025 13:53:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.612906
- Title: Enhancing Cell Counting through MLOps: A Structured Approach for Automated Cell Analysis
- Title(参考訳): MLOpsによる細胞カウントの強化:自動細胞解析のための構造的アプローチ
- Authors: Matteo Testi, Luca Clissa, Matteo Ballabio, Salvatore Ricciardi, Federico Baldo, Emanuele Frontoni, Sara Moccia, Gennario Vessio,
- Abstract要約: 本稿では,Cell Counting Machine Learning Operations (CC-MLOps)を紹介する。
実践的なユースケースを通じて、MLOps原則が信頼性を高め、ヒューマンエラーを低減し、スケーラブルなCell Countingソリューションを実現する方法を実証する。
- 参考スコア(独自算出の注目度): 5.615229139948217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) models offer significant potential for advancing cell counting applications in neuroscience, medical research, pharmaceutical development, and environmental monitoring. However, implementing these models effectively requires robust operational frameworks. This paper introduces Cell Counting Machine Learning Operations (CC-MLOps), a comprehensive framework that streamlines the integration of ML in cell counting workflows. CC-MLOps encompasses data access and preprocessing, model training, monitoring, explainability features, and sustainability considerations. Through a practical use case, we demonstrate how MLOps principles can enhance model reliability, reduce human error, and enable scalable Cell Counting solutions. This work provides actionable guidance for researchers and laboratory professionals seeking to implement machine learning (ML)- powered cell counting systems.
- Abstract(参考訳): 機械学習(ML)モデルは、神経科学、医学研究、医薬品開発、環境モニタリングにおいて、細胞カウントの応用を推し進める大きな可能性を秘めている。
しかし、これらのモデルを効果的に実装するには、堅牢な運用フレームワークが必要である。
本稿では,Cell Counting Machine Learning Operations (CC-MLOps)を紹介する。
CC-MLOpsには、データアクセスと前処理、モデルトレーニング、監視、説明可能性機能、持続可能性に関する考慮が含まれている。
実用的なユースケースを通じて、MLOps原則がモデルの信頼性を高め、ヒューマンエラーを低減し、スケーラブルなセルカウントソリューションを実現する方法を実証する。
この研究は、機械学習(ML)を利用した細胞カウントシステムの実装を目指す研究者や研究室の専門家に対して、実用的なガイダンスを提供する。
関連論文リスト
- Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics [1.1510009152620668]
機械学習の未調査の側面は、最小限の最適表現を開発する方法である。
我々の見解では、MLに基づくモデリングは、設計によって根本的に解釈可能な計算単位をベースとすべきである。
本研究では,比較的類似した分散状態ネットワークを用いて,物理的解釈可能性と予測性能を両立させることができることを示す。
論文 参考訳(メタデータ) (2024-12-06T08:30:01Z) - Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data [13.56585855722118]
大規模言語モデル(LLM)は、テキストの膨大なコーパスを効率的に処理し、合成し、生物学的知識を自動的に抽出する能力を実証している。
本研究は、単一細胞RNAシークエンシング(scRNA-seq)データにおいて、細胞型を正確に分類し、アノテートするLLMの可能性を探るものである。
以上の結果から,LCMは微調整を必要とせずに単一セルデータの堅牢な解釈を実現できることが示された。
論文 参考訳(メタデータ) (2024-12-03T23:58:35Z) - Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
本稿では,セルをポイントとして扱うことで細胞追跡を再現する新しいエンド・ツー・エンドのワンステージフレームワークを提案する。
従来の方法とは異なり、CAPは明示的な検出やセグメンテーションの必要性を排除し、代わりに1段階の配列の細胞を共同で追跡する。
CAPは有望な細胞追跡性能を示し、既存の方法の10倍から55倍効率が高い。
論文 参考訳(メタデータ) (2024-11-22T10:16:35Z) - Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry [0.0]
フロー内の機械学習(ML)モデルは、エラー率を低減し、効率を向上し、臨床実験室の効率を向上する可能性がある。
このようなモデルの臨床的展開についてはほとんど研究されていない。
急性骨髄性白血病(AML)の検出のためのMLモデルと臨床実装を支えるインフラについて述べる。
論文 参考訳(メタデータ) (2024-09-17T16:53:47Z) - Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases [81.70591346986582]
モバイル端末上でのLarge Language Models(LLM)とLarge Multimodal Models(LMM)を評価するためのベンチマークフレームワークであるMobileAIBenchを紹介する。
MobileAIBenchは、さまざまなサイズ、量子化レベル、タスクにわたるモデルを評価し、実際のデバイス上でのレイテンシとリソース消費を測定する。
論文 参考訳(メタデータ) (2024-06-12T22:58:12Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
本稿では, バイオメディカル問題データセットの k-fold cross-validation (CV) への階層化のための新しい計算手法を提案する。
このアプローチはモデルの安定性を改善し、信頼を確立し、トレーニングされたIMLモデルによって生成された結果の説明を提供する。
論文 参考訳(メタデータ) (2023-03-15T12:02:02Z) - DEPLOYR: A technical framework for deploying custom real-time machine
learning models into the electronic medical record [5.660769142308798]
機械学習モデルのリアルタイム展開とモニタリングを可能にするフレームワークであるDEPLOYRを提案する。
コア機能と設計決定について論じ,EMRソフトウェア内の動作に基づいて推論をトリガーする機構について論じる。
我々は、スタンフォード・ヘルスケアのEpicの生産事例において、クリニカル・ボタンクリックによって引き起こされる12のMLモデルを静かに展開し、前向きに評価することで、DEPLOYRの使用を実証する。
論文 参考訳(メタデータ) (2023-03-11T01:11:24Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。