Emergence of Hermitian topology from non-Hermitian knots
- URL: http://arxiv.org/abs/2504.20167v1
- Date: Mon, 28 Apr 2025 18:06:08 GMT
- Title: Emergence of Hermitian topology from non-Hermitian knots
- Authors: Gaurav Hajong, Ranjan Modak, Bhabani Prasad Mandal,
- Abstract summary: We show that the choice of a NH Hamiltonian whose singular values match the eigenvalues of a Hermitian model is not unique.<n>Our study suggests that this connection between the NH and Hermitian models remains robust as long as the periodicity in lattice momentum is same for both.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-Hermiticity of the system gives rise to a distinct knot topology in the complex eigenvalue spectrum, which has no counterpart in Hermitian systems. In contrast, the singular values of a non-Hermitian (NH) Hamiltonian are always real by definition, meaning they can also be interpreted as the eigenvalues of some underlying Hermitian Hamiltonian. In this work, we demonstrate that if the singular values of a NH Hamiltonian are treated as eigenvalues of prototype translational-invariant Hermitian models that undergo a topological phase transition between two distinct phases, the complex eigenvalues of the NH Hamiltonian will also undergo a transition between different knot structures. We emphasize that the choice of a NH Hamiltonian whose singular values match the eigenvalues of a Hermitian model is not unique. However, our study suggests that this connection between the NH and Hermitian models remains robust as long as the periodicity in lattice momentum is same for both. Furthermore, we provide an example showing that a change in the topology of the Hermitian model implies a transition in the underlying NH knot topology, but a change in knot topology does not necessarily signal a topological transition in the Hermitian system.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)<n>Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Quantum simulation of the pseudo-Hermitian
Landau-Zener-St\"uckelberg-Majorana effect [0.0]
We present a quantum simulation of the time-dependent non-Hermitian non-PT-symmetric Hamiltonian used in a pseudo-Hermitian extension of the Landau-Zener-St"uckelberg-Majorana (LZSM) model.
arXiv Detail & Related papers (2024-01-30T20:53:44Z) - Non-Hermitian Parent Hamiltonian from Generalized Quantum Covariance
Matrix [0.0]
We provide a systematical and efficient way to construct non-Hermitian Hamiltonian from a single pair of biorthogonal eigenstates.
Our work sheds light on future exploration on non-Hermitian physics.
arXiv Detail & Related papers (2023-07-06T16:27:22Z) - Parsing skin effect in a non-Hermitian spinless BHZ-like model [0.0]
This work comprehensively investigates the non-Hermitian skin effect (NHSE) in a spinless Bernevig- Hughes-Zhang (BHZ)-like model in one dimension.
We show that there are exceptions, and more in-depth analyses are required to decode the presence of NHSE or its variants in a system.
arXiv Detail & Related papers (2023-04-25T11:12:56Z) - Variational Matrix Product State Approach for Non-Hermitian System Based
on a Companion Hermitian Hamiltonian [15.165363050850857]
We propose an algorithm for solving the ground state of a non-Hermitian system in the matrix product state (MPS) formalism.
If the eigenvalues of the non-Hermitian system are known, the companion Hermitian Hamiltonian can be directly constructed and solved.
arXiv Detail & Related papers (2022-10-26T17:00:28Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Restoration of the non-Hermitian bulk-boundary correspondence via
topological amplification [0.0]
Non-Hermitian (NH) lattice Hamiltonians display a unique kind of energy gap and extreme sensitivity to boundary conditions.
Due to the NH skin effect, the separation between edge and bulk states is blurred.
We restore the bulk-boundary correspondence for the most paradigmatic class of NH Hamiltonians.
arXiv Detail & Related papers (2022-07-25T18:00:03Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Statistical properties of eigenvalues of the non-Hermitian
Su-Schrieffer-Heeger model with random hopping terms [0.0]
We find that eigenvalues can be purely real in a certain range of parameters, even in the absence of parity and time-reversal symmetry.
We clarify that a non-Hermitian Hamiltonian whose eigenvalues are purely real can be mapped to a Hermitian Hamiltonian which inherits the symmetries of the original Hamiltonian.
arXiv Detail & Related papers (2020-05-06T10:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.