Can LLMs Detect Intrinsic Hallucinations in Paraphrasing and Machine Translation?
- URL: http://arxiv.org/abs/2504.20699v1
- Date: Tue, 29 Apr 2025 12:30:05 GMT
- Title: Can LLMs Detect Intrinsic Hallucinations in Paraphrasing and Machine Translation?
- Authors: Evangelia Gogoulou, Shorouq Zahra, Liane Guillou, Luise Dürlich, Joakim Nivre,
- Abstract summary: We evaluate a suite of open-access LLMs on their ability to detect intrinsic hallucinations in two conditional generation tasks.<n>We study how model performance varies across tasks and language.<n>We find that performance varies across models but is consistent across prompts.
- Score: 7.416552590139255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A frequently observed problem with LLMs is their tendency to generate output that is nonsensical, illogical, or factually incorrect, often referred to broadly as hallucination. Building on the recently proposed HalluciGen task for hallucination detection and generation, we evaluate a suite of open-access LLMs on their ability to detect intrinsic hallucinations in two conditional generation tasks: translation and paraphrasing. We study how model performance varies across tasks and language and we investigate the impact of model size, instruction tuning, and prompt choice. We find that performance varies across models but is consistent across prompts. Finally, we find that NLI models perform comparably well, suggesting that LLM-based detectors are not the only viable option for this specific task.
Related papers
- Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models [0.0]
Hallucinations in large language models (LLMs) present a growing challenge across real-world applications.
We propose a prompt-based framework to systematically trigger and quantify hallucination.
arXiv Detail & Related papers (2025-05-01T14:33:47Z) - DecoPrompt : Decoding Prompts Reduces Hallucinations when Large Language Models Meet False Premises [28.72485319617863]
We propose a new prompting algorithm, named DecoPrompt, to mitigate hallucination.<n> DecoPrompt leverages LLMs to "decode" the false-premise prompts without really eliciting hallucination output from LLMs.<n>We perform experiments on two datasets, demonstrating that DecoPrompt can reduce hallucinations effectively on outputs from different LLMs.
arXiv Detail & Related papers (2024-11-12T00:48:01Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.
We present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers.
Motivated by this, we propose a novel dynamic correction decoding method for MLLMs DeCo, which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-13T18:59:58Z) - SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection [10.54378596443678]
Large language models (LLMs) are highly capable but face latency challenges in real-time applications.
This study optimize the real-time interpretable hallucination detection by introducing effective prompting techniques.
arXiv Detail & Related papers (2024-08-22T22:13:13Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
Large language models are known to hallucinate when faced with unfamiliar queries.
We find that unfamiliar examples in the models' finetuning data are crucial in shaping these errors.
Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations.
arXiv Detail & Related papers (2024-03-08T18:28:13Z) - Large Language Models are Null-Shot Learners [1.424005404275135]
Null-shot prompting exploits hallucination in large language models (LLMs)
We show that it is possible to exploit hallucination to increase performance in performing tasks compared to standard zero-shot prompting.
arXiv Detail & Related papers (2024-01-16T10:53:11Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.