Large Language Models are Null-Shot Learners
- URL: http://arxiv.org/abs/2401.08273v3
- Date: Sat, 16 Nov 2024 04:23:20 GMT
- Title: Large Language Models are Null-Shot Learners
- Authors: Pittawat Taveekitworachai, Febri Abdullah, Ruck Thawonmas,
- Abstract summary: Null-shot prompting exploits hallucination in large language models (LLMs)
We show that it is possible to exploit hallucination to increase performance in performing tasks compared to standard zero-shot prompting.
- Score: 1.424005404275135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents null-shot prompting. Null-shot prompting exploits hallucination in large language models (LLMs) by instructing LLMs to utilize information from the "Examples" section that never exists within the provided context to perform a task. While reducing hallucination is crucial and non-negligible for daily and critical uses of LLMs, we propose that in the current landscape in which these LLMs still hallucinate, it is possible, in fact, to exploit hallucination to increase performance in performing tasks compared to standard zero-shot prompting. Experiments with eight LLMs show improvements in performance across the majority of eight datasets, including reading comprehension, arithmetic reasoning, and closed-book question answering. The observed inconsistency in increased relative performance across the LLMs also potentially indicates a different degree of inherent hallucination in each model. These differences show that it is possible to utilize null-shot prompting as a way to detect degrees of hallucination in LLMs using existing benchmarking datasets. We also perform ablation studies, including experimenting with a modified version of null-shot prompting that incorporates ideas from zero-shot chain-of-thought prompting, which shows different trends of results.
Related papers
- Can LLMs Detect Intrinsic Hallucinations in Paraphrasing and Machine Translation? [7.416552590139255]
We evaluate a suite of open-access LLMs on their ability to detect intrinsic hallucinations in two conditional generation tasks.
We study how model performance varies across tasks and language.
We find that performance varies across models but is consistent across prompts.
arXiv Detail & Related papers (2025-04-29T12:30:05Z) - Uncertainty-Aware Fusion: An Ensemble Framework for Mitigating Hallucinations in Large Language Models [2.98260857963929]
Large Language Models (LLMs) are known to hallucinate and generate non-factual outputs which can undermine user trust.
Traditional methods to directly mitigate hallucinations, such as representation editing and contrastive decoding, often require additional training data and involve high implementation complexity.
We propose Uncertainty-Aware Fusion (UAF), an ensemble framework to reduce hallucinations by strategically combining multiple LLM based on their accuracy and self-assessment abilities.
arXiv Detail & Related papers (2025-02-22T10:48:18Z) - Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models [20.175106988135454]
We introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in Large Language Models (LLMs)
The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries.
In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational overhead, requiring only three passes through the LLM and utilizing two sets of tokens.
arXiv Detail & Related papers (2025-01-17T07:30:01Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - DecoPrompt : Decoding Prompts Reduces Hallucinations when Large Language Models Meet False Premises [28.72485319617863]
We propose a new prompting algorithm, named DecoPrompt, to mitigate hallucination.
DecoPrompt leverages LLMs to "decode" the false-premise prompts without really eliciting hallucination output from LLMs.
We perform experiments on two datasets, demonstrating that DecoPrompt can reduce hallucinations effectively on outputs from different LLMs.
arXiv Detail & Related papers (2024-11-12T00:48:01Z) - Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
arXiv Detail & Related papers (2024-10-25T08:34:53Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-13T18:59:58Z) - SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection [10.54378596443678]
Large language models (LLMs) are highly capable but face latency challenges in real-time applications.
This study optimize the real-time interpretable hallucination detection by introducing effective prompting techniques.
arXiv Detail & Related papers (2024-08-22T22:13:13Z) - Hallucination Diversity-Aware Active Learning for Text Summarization [46.00645048690819]
Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported.
Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs.
We propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed.
arXiv Detail & Related papers (2024-04-02T02:30:27Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.
These hallucinations are challenging to detect through traditional methods.
We propose an adversarially DEcoupling method to disentangle the abilities of LLMs (DECENT)
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.