DS_FusionNet: Dynamic Dual-Stream Fusion with Bidirectional Knowledge Distillation for Plant Disease Recognition
- URL: http://arxiv.org/abs/2504.20948v2
- Date: Wed, 30 Apr 2025 06:35:15 GMT
- Title: DS_FusionNet: Dynamic Dual-Stream Fusion with Bidirectional Knowledge Distillation for Plant Disease Recognition
- Authors: Yanghui Song, Chengfu Yang,
- Abstract summary: This study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet)<n>The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy.<n> Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets.
- Score: 5.665116885785105
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given the severe challenges confronting the global growth security of economic crops, precise identification and prevention of plant diseases has emerged as a critical issue in artificial intelligence-enabled agricultural technology. To address the technical challenges in plant disease recognition, including small-sample learning, leaf occlusion, illumination variations, and high inter-class similarity, this study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet). The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy, significantly enhancing recognition accuracy. Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets, while maintaining 85% accuracy on the complex PlantWild dataset, exhibiting exceptional generalization capabilities. This research not only provides novel technical insights for fine-grained image classification but also establishes a robust foundation for precise identification and management of agricultural diseases.
Related papers
- Explainability of Deep Learning-Based Plant Disease Classifiers Through Automated Concept Identification [0.0]
We apply the Automated Concept-based Explanation (ACE) method to plant disease classification.
ACE automatically identifies the visual concepts found in the image data and provides insights about the critical features influencing the model predictions.
Our findings demonstrate the potential of ACE to improve the explainability of plant disease classification based on deep learning.
arXiv Detail & Related papers (2024-12-10T10:59:43Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
This paper introduces a hybrid Intrusion Detection System (IDS) that combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm.
Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost.
Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities.
arXiv Detail & Related papers (2024-08-28T15:58:49Z) - Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Automatic Fused Multimodal Deep Learning for Plant Identification [1.2289361708127877]
We introduce a pioneering multimodal DL-based approach for plant classification with automatic modality fusion.<n>Our method achieves 82.61% accuracy on 979 classes of Multimodal-PlantCLEF, surpassing state-of-the-art methods and outperforming late fusion by 10.33%.
arXiv Detail & Related papers (2024-06-03T15:43:29Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
arXiv Detail & Related papers (2024-05-30T13:46:56Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - Must: Maximizing Latent Capacity of Spatial Transcriptomics Data [41.70354088000952]
This paper introduces Multiple-modality Structure Transformation, named MuST, a novel methodology to tackle the challenge.
It integrates the multi-modality information contained in the ST data effectively into a uniform latent space to provide a foundation for all the downstream tasks.
The results show that it outperforms existing state-of-the-art methods with clear advantages in the precision of identifying and preserving structures of tissues and biomarkers.
arXiv Detail & Related papers (2024-01-15T09:07:28Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Semi-Supervised StyleGAN for Disentanglement Learning [79.01988132442064]
Current disentanglement methods face several inherent limitations.
We design new architectures and loss functions based on StyleGAN for semi-supervised high-resolution disentanglement learning.
arXiv Detail & Related papers (2020-03-06T22:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.