論文の概要: LIFT: LLM-Based Pragma Insertion for HLS via GNN Supervised Fine-Tuning
- arxiv url: http://arxiv.org/abs/2504.21187v1
- Date: Tue, 29 Apr 2025 21:42:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 23:21:24.869572
- Title: LIFT: LLM-Based Pragma Insertion for HLS via GNN Supervised Fine-Tuning
- Title(参考訳): LIFT:GNN監督ファインチューニングによるHLSのためのLCMベースのプラグマ挿入
- Authors: Neha Prakriya, Zijian Ding, Yizhou Sun, Jason Cong,
- Abstract要約: LIFTは大規模な言語モデル(LLM)ベースのHLSのためのコーディングアシスタントで、パフォーマンスクリティカルなプラグマを自動的に生成する。
我々は、グラフニューラルネットワーク(GNN)でトレーニングプロセスを密に統合し、監督することにより、LSMを微調整する。
- 参考スコア(独自算出の注目度): 38.679497621876926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: FPGAs are increasingly adopted in datacenter environments for their reconfigurability and energy efficiency. High-Level Synthesis (HLS) tools have eased FPGA programming by raising the abstraction level from RTL to untimed C/C++, yet attaining high performance still demands expert knowledge and iterative manual insertion of optimization pragmas to modify the microarchitecture. To address this challenge, we propose LIFT, a large language model (LLM)-based coding assistant for HLS that automatically generates performance-critical pragmas given a C/C++ design. We fine-tune the LLM by tightly integrating and supervising the training process with a graph neural network (GNN), combining the sequential modeling capabilities of LLMs with the structural and semantic understanding of GNNs necessary for reasoning over code and its control/data dependencies. On average, LIFT produces designs that improve performance by 3.52x and 2.16x than prior state-of the art AutoDSE and HARP respectively, and 66x than GPT-4o.
- Abstract(参考訳): FPGAは、リコンフィギャラビリティとエネルギー効率のために、データセンター環境にますます採用されている。
高レベル合成(HLS)ツールは、RTLから未使用のC/C++への抽象化レベルを上げることでFPGAプログラミングを緩和するが、ハイパフォーマンスを実現するには専門家の知識が必要であり、マイクロアーキテクチャを変更するために最適化プラグマを反復的に手動で挿入する必要がある。
この課題に対処するために,大規模な言語モデル(LLM)に基づくHLSのコーディングアシスタントであるLIFTを提案する。
トレーニングプロセスとグラフニューラルネットワーク(GNN)を密に統合し,LLMの逐次モデリング機能と,コードとその制御/データ依存関係の推論に必要なGNNの構造的および意味的理解を組み合わせることで,LLMを微調整する。
LIFTは平均して3.52倍と2.16倍の性能向上を図り、それぞれAutoDSEとHARP、GPT-4oの66倍の性能向上を図った。
関連論文リスト
- Intelligent4DSE: Optimizing High-Level Synthesis Design Space Exploration with Graph Neural Networks and Large Language Models [3.8429489584622156]
我々は,タスク適応型メッセージパッシングと大規模言語モデル拡張進化アルゴリズムをグラフニューラルネットワークに統合するフレームワークであるCoGNNs-LLMEAを提案する。
予測モデルとして、CoGNNはコンパイラフロントエンド処理後にソースコードから生成された中間表現を直接利用し、HLSツールを起動することなく結果の品質(QoR)の予測を可能にする。
CoGNNは、HLS後のQoR予測における最先端予測精度を実現し、平均予測誤差を2.8$times$と3.4$times$で削減する。
論文 参考訳(メタデータ) (2025-04-28T10:08:56Z) - Can Reasoning Models Reason about Hardware? An Agentic HLS Perspective [18.791753740931185]
OpenAI o3-mini と DeepSeek-R1 は Chain-of-Thought (CoT) を通じて推論を強化している
本稿では, LLM の推論が高レベル合成(HLS)設計空間探索と最適化の課題に対処できるかどうかを検討する。
論文 参考訳(メタデータ) (2025-03-17T01:21:39Z) - Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
大規模言語モデル(LLM)は、コード生成において印象的な能力を示しており、特に自然言語で記述された要求を自動的に実装する。
LLMはメモリ(そして結果として炭素)のフットプリントに重大な課題をもたらす。
LLM量子化の新しいフロンティアは4ビット精度であり、平均メモリフットプリントが70%減少する。
論文 参考訳(メタデータ) (2025-03-10T09:26:08Z) - Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [14.458529723566379]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model [63.774726052837266]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を深く統合した新しいアーキテクチャを導入する。
本稿では,(1)GNNのメッセージパッシング機能を直接LLMのトランスフォーマー層に組み込む構造対応トランスフォーマー,(2)グラフノードとエッジから圧縮されていない全テキストを処理するグラフテキストクロスアテンション,(3)GNN-LLMツインプレクタ,(3)GNN-LLMツインプレクタ,3)GNNのスケーラブルなワンパス予測とともに,LLMの柔軟な自己回帰生成を実現する。
論文 参考訳(メタデータ) (2024-12-08T05:49:58Z) - HiVeGen -- Hierarchical LLM-based Verilog Generation for Scalable Chip Design [55.54477725000291]
HiVeGenは階層的なVerilog生成フレームワークで、生成タスクを階層的なサブモジュールに分解する。
自動設計空間探索(DSE)を階層対応のプロンプト生成に変換し、コードの再利用を強化するために重みに基づく検索を導入する。
エラー補正コストを低減し、生成した設計の質を大幅に向上させる。
論文 参考訳(メタデータ) (2024-12-06T19:37:53Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Are LLMs Any Good for High-Level Synthesis? [1.3927943269211591]
大規模言語モデル(LLM)は、高レベル合成(HLS)プロセスの合理化や置き換えが可能である。
LLMは自然言語の仕様を理解し、Cコードや自然言語の仕様を翻訳することができる。
本研究の目的は、AIアクセラレーション、組み込みシステム、高性能コンピューティングなどのアプリケーションにおいて、最適化されたハードウェア設計のための将来的な方向性を特定することである。
論文 参考訳(メタデータ) (2024-08-19T21:40:28Z) - OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection [54.775409528658486]
OriGenは、セルフリフレクション機能と新しいデータセット拡張方法論を組み込んだ、完全なオープンソースフレームワークである。
このアプローチでは,オープンソースのRTLコードデータセットの品質向上のために,コード-コード拡張技術を採用している。
論文 参考訳(メタデータ) (2024-07-23T07:22:25Z) - Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis [45.471039079664656]
ドメイン固有アクセラレータ(DSA)は、ディープラーニングや自律運転などのアプリケーションで人気を集めている。
本稿では,ソースコードシーケンスのモダリティとグラフのモダリティを深く,きめ細かな方法で相互作用できるモデルであるProgSGを提案する。
ProgSGは、設計性能予測のRMSEを最大22%の価格で削減し、設計を平均1.10Times$で識別する。
論文 参考訳(メタデータ) (2024-06-13T22:34:58Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。