Pretraining Large Brain Language Model for Active BCI: Silent Speech
- URL: http://arxiv.org/abs/2504.21214v1
- Date: Tue, 29 Apr 2025 22:48:27 GMT
- Title: Pretraining Large Brain Language Model for Active BCI: Silent Speech
- Authors: Jinzhao Zhou, Zehong Cao, Yiqun Duan, Connor Barkley, Daniel Leong, Xiaowei Jiang, Quoc-Toan Nguyen, Ziyi Zhao, Thomas Do, Yu-Cheng Chang, Sheng-Fu Liang, Chin-teng Lin,
- Abstract summary: This paper explores silent speech decoding in active brain-computer interface (BCI) systems.<n>We collected a new silent speech dataset of over 120 hours of electroencephalogram (EEG) recordings from 12 subjects.<n>We propose Large Brain Language Model (LBLM) pretrained to decode silent speech for active BCI.
- Score: 31.13704519986318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores silent speech decoding in active brain-computer interface (BCI) systems, which offer more natural and flexible communication than traditional BCI applications. We collected a new silent speech dataset of over 120 hours of electroencephalogram (EEG) recordings from 12 subjects, capturing 24 commonly used English words for language model pretraining and decoding. Following the recent success of pretraining large models with self-supervised paradigms to enhance EEG classification performance, we propose Large Brain Language Model (LBLM) pretrained to decode silent speech for active BCI. To pretrain LBLM, we propose Future Spectro-Temporal Prediction (FSTP) pretraining paradigm to learn effective representations from unlabeled EEG data. Unlike existing EEG pretraining methods that mainly follow a masked-reconstruction paradigm, our proposed FSTP method employs autoregressive modeling in temporal and frequency domains to capture both temporal and spectral dependencies from EEG signals. After pretraining, we finetune our LBLM on downstream tasks, including word-level and semantic-level classification. Extensive experiments demonstrate significant performance gains of the LBLM over fully-supervised and pretrained baseline models. For instance, in the difficult cross-session setting, our model achieves 47.0\% accuracy on semantic-level classification and 39.6\% in word-level classification, outperforming baseline methods by 5.4\% and 7.3\%, respectively. Our research advances silent speech decoding in active BCI systems, offering an innovative solution for EEG language model pretraining and a new dataset for fundamental research.
Related papers
- Tracking Articulatory Dynamics in Speech with a Fixed-Weight BiLSTM-CNN Architecture [0.0]
This paper presents a novel approach for predicting tongue and lip articulatory features involved in a given speech acoustics.<n>The proposed network is trained with two datasets consisting of simultaneously recorded speech and Electromagnetic Articulography (EMA) datasets.
arXiv Detail & Related papers (2025-04-25T05:57:22Z) - Ensemble Machine Learning Model for Inner Speech Recognition: A Subject-Specific Investigation [0.22198209072577352]
This study develops a Machine Learning technique to classify inner speech using 128-channel surface EEG signals.<n>The performance of six ML algorithms is evaluated, and an ensemble model is proposed.<n>The proposed framework shows promise in the classification of inner speech using surface EEG signals.
arXiv Detail & Related papers (2024-12-09T16:50:49Z) - Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs [3.8300818830608345]
Multi-modal contrastive learning strategies for audio and text have rapidly gained interest.<n>The ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research.<n>We propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL.
arXiv Detail & Related papers (2024-08-17T18:53:17Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
arXiv Detail & Related papers (2024-08-08T03:40:25Z) - SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation [56.913182262166316]
Chain-of-Information Generation (CoIG) is a method for decoupling semantic and perceptual information in large-scale speech generation.
SpeechGPT-Gen is efficient in semantic and perceptual information modeling.
It markedly excels in zero-shot text-to-speech, zero-shot voice conversion, and speech-to-speech dialogue.
arXiv Detail & Related papers (2024-01-24T15:25:01Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Deep Representation Learning for Open Vocabulary
Electroencephalography-to-Text Decoding [6.014363449216054]
We present an end-to-end deep learning framework for non-invasive brain recordings that brings modern representational learning approaches to neuroscience.
Our model achieves a BLEU-1 score of 42.75%, a ROUGE-1-F of 33.28%, and a BERTScore-F of 53.86%, outperforming the previous state-of-the-art methods by 3.38%, 8.43%, and 6.31%, respectively.
arXiv Detail & Related papers (2023-11-15T08:03:09Z) - SelfSeg: A Self-supervised Sub-word Segmentation Method for Neural
Machine Translation [51.881877192924414]
Sub-word segmentation is an essential pre-processing step for Neural Machine Translation (NMT)
This paper introduces SelfSeg, a self-supervised neural sub-word segmentation method.
SelfSeg is much faster to train/decode and requires only monolingual dictionaries instead of parallel corpora.
arXiv Detail & Related papers (2023-07-31T04:38:47Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
arXiv Detail & Related papers (2020-04-27T08:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.