論文の概要: The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges
- arxiv url: http://arxiv.org/abs/2411.13562v1
- Date: Thu, 07 Nov 2024 15:35:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:05:00.895507
- Title: The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges
- Title(参考訳): 金融予測におけるAIの役割--ChatGPTの可能性と課題
- Authors: Shuochen Bi, Tingting Deng, Jue Xiao,
- Abstract要約: 金融セクター、特に財務予測における人工知能(AI)の将来への展望。
ディープラーニング、強化学習、BlockchAInとモノのインターネットとの統合など、AI技術のダイナミクス。
AIの統合は、金融セクターにおける規制と倫理上の問題、およびデータプライバシ保護の意義に挑戦する。
- 参考スコア(独自算出の注目度): 0.9217021281095907
- License:
- Abstract: The outlook for the future of artificial intelligence (AI) in the financial sector, especially in financial forecasting, the challenges and implications. The dynamics of AI technology, including deep learning, reinforcement learning, and integration with blockchAIn and the Internet of Things, also highlight the continued improvement in data processing capabilities. Explore how AI is reshaping financial services with precisely tAIlored services that can more precisely meet the diverse needs of individual investors. The integration of AI challenges regulatory and ethical issues in the financial sector, as well as the implications for data privacy protection. Analyze the limitations of current AI technology in financial forecasting and its potential impact on the future financial industry landscape, including changes in the job market, the emergence of new financial institutions, and user interface innovations. Emphasizing the importance of increasing investor understanding and awareness of AI and looking ahead to future trends in AI tools for user experience to drive wider adoption of AI in financial decision making. The huge potential, challenges, and future directions of AI in the financial sector highlight the critical role of AI technology in driving transformation and innovation in the financial sector
- Abstract(参考訳): 金融セクターにおける人工知能(AI)の将来展望、特に財務予測、課題と意味について。
ディープラーニング、強化学習、BlockchAInとモノのインターネットとの統合など、AI技術のダイナミクスも、データ処理能力の継続的な改善を強調している。
AIは、個人投資家の多様なニーズをより正確に満たすことができる、正確にtAIloredサービスで金融サービスを再構築する方法について探求する。
AIの統合は、金融セクターにおける規制と倫理上の問題、およびデータプライバシ保護の意義に挑戦する。
金融予測における現在のAI技術の限界と、雇用市場の変化、新しい金融機関の出現、ユーザーインターフェースの革新など、将来の金融業界環境に対する潜在的な影響を分析する。
投資家のAIに対する理解と認識を高めることの重要性を強調し、ユーザーエクスペリエンスのためのAIツールの今後の動向に注目して、財務的な意思決定においてAIの採用を拡大する。
金融セクターにおけるAIの巨大な可能性、課題、将来的な方向性は、金融セクターにおける変革とイノベーションの推進におけるAI技術の重要性を強調している。
関連論文リスト
- Redefining Finance: The Influence of Artificial Intelligence (AI) and Machine Learning (ML) [2.3931689873603594]
技術の急速な変革により、金融における人工知能(AI)と機械学習(ML)の融合はエコシステム全体を混乱させています。
金融機関は、リテールバンキング、ウェルスマネジメント、コーポレートバンキングと決済のエコシステムに大きく影響を受けている。
論文 参考訳(メタデータ) (2024-10-21T12:32:17Z) - Comprehensive Overview of Artificial Intelligence Applications in Modern Industries [0.3374875022248866]
本稿では、医療、金融、製造業、小売の4つの主要な分野にわたるAIの適用について検討する。
我々は、倫理的考察、AI開発の将来的な軌跡、そして経済成長を促進する可能性など、AI統合がもたらす意味について論じる。
論文 参考訳(メタデータ) (2024-09-19T19:22:52Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
本稿では,ESGフレームワークの活性化におけるAIの必要性と影響を明らかにするために,産業環境を調査した。
調査では、分析能力、リスク評価、顧客エンゲージメント、報告精度など、ESGの主要な3つの柱にまたがるAIアプリケーションを分類した。
この論文は、ESG関連の銀行プロセスにおけるAI展開の倫理的側面を強調し、責任と持続可能なAIの衝動についても論じている。
論文 参考訳(メタデータ) (2024-02-03T02:14:47Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
金融セクターにおけるAIの応用は、業界を変えつつある。
しかしながら、これらのメリットに加えて、AIはいくつかの課題も提示する。
これには透明性、解釈可能性、公正性、説明責任、信頼性に関する問題が含まれる。
金融セクターにおけるAIの使用は、データプライバシとセキュリティに関する重要な疑問をさらに引き起こす。
このニーズをグローバルに認識しているにもかかわらず、金融におけるAIの使用に関する明確なガイドラインや法律はいまだに存在しない。
論文 参考訳(メタデータ) (2023-08-31T08:30:09Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - AI in Finance: Challenges, Techniques and Opportunities [32.98512067306018]
金融におけるAIは、金融ビジネスにおけるAI技術の応用を広く指している。
このレビューは、金融におけるAI研究の圧倒的な課題、技術、および機会に関する包括的で密集したロードマップを提供する。
論文 参考訳(メタデータ) (2021-07-20T01:39:10Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI技術は、量的投資システムに新たな課題を提起した。
Qlibは、その可能性の実現、研究の強化、定量的投資におけるAIテクノロジの価値の創造を目的とする。
論文 参考訳(メタデータ) (2020-09-22T12:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。