Graph RAG for Legal Norms: A Hierarchical and Temporal Approach
- URL: http://arxiv.org/abs/2505.00039v1
- Date: Tue, 29 Apr 2025 18:36:57 GMT
- Title: Graph RAG for Legal Norms: A Hierarchical and Temporal Approach
- Authors: Hudson de Martim,
- Abstract summary: This article proposes an adaptation of Graph Retrieval Augmented Generation (Graph RAG) specifically designed for the analysis and comprehension of legal norms.<n>By combining structured knowledge graphs with contextually enriched text segments, Graph RAG offers a promising solution to address the inherent complexity and vast volume of legal data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article proposes an adaptation of Graph Retrieval Augmented Generation (Graph RAG) specifically designed for the analysis and comprehension of legal norms, which are characterized by their predefined hierarchical structure, extensive network of internal and external references and multiple temporal versions. By combining structured knowledge graphs with contextually enriched text segments, Graph RAG offers a promising solution to address the inherent complexity and vast volume of legal data. The integration of hierarchical structure and temporal evolution into knowledge graphs - along with the concept of comprehensive Text Units - facilitates the construction of richer, interconnected representations of legal knowledge. Through a detailed analysis of Graph RAG and its application to legal norm datasets, this article aims to significantly advance the field of Artificial Intelligence applied to Law, creating opportunities for more effective systems in legal research, legislative analysis, and decision support.
Related papers
- RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization [6.0045906216050815]
Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs)<n>This technology excels at inferring relationships within vast unstructured or semi-structured datasets.<n>We introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF)
arXiv Detail & Related papers (2025-02-27T18:35:39Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.
We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)
We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - Knowledge Graphs Construction from Criminal Court Appeals: Insights from the French Cassation Court [49.1574468325115]
This paper presents a framework for constructing knowledge graphs from appeals to the French Cassation Court.<n>The framework includes a domain-specific ontology and a derived dataset, offering a foundation for structured legal data representation and analysis.
arXiv Detail & Related papers (2025-01-24T15:38:32Z) - A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented generation (RAG) has emerged as a promising solution to customize large language models (LLMs)<n>This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-01-21T06:25:21Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Finding the Law: Enhancing Statutory Article Retrieval via Graph Neural
Networks [3.5880535198436156]
We propose a novel graph-augmented dense statute retriever (G-DSR) model that incorporates the structure of legislation via a graph neural network to improve dense retrieval performance.
Experimental results show that our approach outperforms strong retrieval baselines on a real-world expert-annotated SAR dataset.
arXiv Detail & Related papers (2023-01-30T12:59:09Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.