Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
- URL: http://arxiv.org/abs/2505.02164v1
- Date: Sun, 04 May 2025 15:53:49 GMT
- Title: Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
- Authors: Justin Ho, Alexandra Colby, William Fisher,
- Abstract summary: This paper presents a domain-specific implementation of Retrieval-Augmented Generation tailored to the Fair Use Doctrine in U.S. copyright law.<n>Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Related papers
- NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System [5.551153560142468]
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning.<n>We propose NyayaRAG, a Retrieval-Augmented Generation framework that simulates realistic courtroom scenarios.<n>Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
arXiv Detail & Related papers (2025-08-01T15:23:20Z) - RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience.<n>Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision.<n>This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the Intelligent Court''
arXiv Detail & Related papers (2025-03-02T10:26:54Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
The size of legal opinions continues to grow, making it increasingly challenging to develop a model that can accurately predict the rhetorical roles of legal opinions.
We propose a novel model architecture for automatically predicting rhetorical roles using pre-trained language models (PLMs) enhanced with knowledge of sentence position information.
Based on an annotated corpus from the LegalEval@SemEval2023 competition, we demonstrate that our approach requires fewer parameters, resulting in lower computational costs.
arXiv Detail & Related papers (2023-10-08T20:33:55Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions.
After initial experimental results, we refine the target citation predictions with the feedback of legal experts.
We introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers.
arXiv Detail & Related papers (2023-05-25T21:40:58Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Finding the Law: Enhancing Statutory Article Retrieval via Graph Neural
Networks [3.5880535198436156]
We propose a novel graph-augmented dense statute retriever (G-DSR) model that incorporates the structure of legislation via a graph neural network to improve dense retrieval performance.
Experimental results show that our approach outperforms strong retrieval baselines on a real-world expert-annotated SAR dataset.
arXiv Detail & Related papers (2023-01-30T12:59:09Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
We propose an interaction-focused network for legal case retrieval with a multi-view contrastive learning objective.
Case-view contrastive learning minimizes the hidden space distance between relevant legal case representations.
We employ a legal element knowledge-aware indicator to detect legal elements of cases.
arXiv Detail & Related papers (2022-10-11T06:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.