論文の概要: Real-World Gaps in AI Governance Research
- arxiv url: http://arxiv.org/abs/2505.00174v1
- Date: Wed, 30 Apr 2025 20:44:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.173554
- Title: Real-World Gaps in AI Governance Research
- Title(参考訳): AIガバナンス研究における現実世界のギャップ
- Authors: Ilan Strauss, Isobel Moure, Tim O'Reilly, Sruly Rosenblat,
- Abstract要約: 9,439件のAI生成論文(2020年1月から2025年3月)から1,178件の安全性と信頼性に関する論文を引用し、主要なAI企業や大学の研究成果を比較した。
企業AI研究は、モデルアライメントとテストと評価という、デプロイ前領域にますます集中していることに気付きました。
医療、金融、誤情報、説得力と中毒性の特徴、幻覚、著作権など、リスクの高い展開領域に重要な研究ギャップが存在する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drawing on 1,178 safety and reliability papers from 9,439 generative AI papers (January 2020 - March 2025), we compare research outputs of leading AI companies (Anthropic, Google DeepMind, Meta, Microsoft, and OpenAI) and AI universities (CMU, MIT, NYU, Stanford, UC Berkeley, and University of Washington). We find that corporate AI research increasingly concentrates on pre-deployment areas -- model alignment and testing & evaluation -- while attention to deployment-stage issues such as model bias has waned. Significant research gaps exist in high-risk deployment domains, including healthcare, finance, misinformation, persuasive and addictive features, hallucinations, and copyright. Without improved observability into deployed AI, growing corporate concentration could deepen knowledge deficits. We recommend expanding external researcher access to deployment data and systematic observability of in-market AI behaviors.
- Abstract(参考訳): 9,439件の生成AI論文(2020年1月から2025年3月)から1,178件の安全性と信頼性に関する論文を引用し、主要なAI企業(Anthropic、Google DeepMind、Meta、Microsoft、OpenAI)とAI大学(CMU、MIT、NYU、スタンフォード、UCバークレー、ワシントン大学)の研究成果を比較した。
コーポレートAI研究は、モデルアライメントやテスト、評価といった、デプロイ前の領域に注力する一方で、モデルバイアスのようなデプロイメントステージの問題への関心が薄れています。
医療、金融、誤情報、説得力と中毒性の特徴、幻覚、著作権など、リスクの高い展開領域に重要な研究ギャップが存在する。
デプロイされたAIへの可観測性の改善がなければ、企業の集中度の増加は知識不足を深める可能性がある。
我々は、外部研究者によるデプロイメントデータへのアクセスと、市場内AI行動の体系的な可観測性の拡大を推奨する。
関連論文リスト
- Artificial Intelligence Index Report 2025 [39.08798007138432]
今年のレポートには、AIハードウェアの進化する状況に関する詳細な分析、推論コストの新たな見積が含まれている。
また、責任あるAIプラクティスの企業導入に関する新鮮なデータも紹介します。
AIインデックスは、ニューヨーク・タイムズ、ブルームバーグ、ガーディアンなどの主要メディアで引用されている。
論文 参考訳(メタデータ) (2025-04-08T02:01:37Z) - Mapping Technical Safety Research at AI Companies: A literature review and incentives analysis [0.0]
レポートは、3つの主要なAI企業が実施する安全なAI開発に関する技術研究を分析している。
Anthropic、Google DeepMind、OpenAI。
私たちは安全なAI開発を、大規模な誤用や事故のリスクを生じにくいAIシステムの開発であると定義しました。
論文 参考訳(メタデータ) (2024-09-12T09:34:55Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Artificial Intelligence and Life in 2030: The One Hundred Year Study on
Artificial Intelligence [74.2630823914258]
このレポートは、AIが今後数年間に影響を及ぼす可能性のある、典型的な都市環境の8つのドメインを調査している。
それは、AIの現状を科学的かつ技術的に正確に描写する一般大衆に提供することを目的としている。
この報告書の費用は、ハーバード大学のBarbara Groszが議長を務めるAI100 Standing Committee(AI100スタンディング委員会)のパネルに提出された。
論文 参考訳(メタデータ) (2022-10-31T18:35:36Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Ethics and Governance of Artificial Intelligence: Evidence from a Survey
of Machine Learning Researchers [0.0]
機械学習(ML)と人工知能(AI)の研究者は、AIの倫理とガバナンスにおいて重要な役割を果たす。
トップクラスのAI/MLカンファレンスで公開した人々の調査を行った。
AI/MLの研究者たちは、国際組織や科学組織に対して高いレベルの信頼を置いている。
論文 参考訳(メタデータ) (2021-05-05T15:23:12Z) - The De-democratization of AI: Deep Learning and the Compute Divide in
Artificial Intelligence Research [0.2855485723554975]
大手テクノロジー企業やエリート大学は、2012年のディープラーニングの予期せぬ増加以来、主要なAIカンファレンスへの参加を増やしている。
この効果は、QS世界大学ランキングで1-50位にランクされているエリート大学に集中している。
このAI研究における企業やエリート大学の存在の増加は、中層(QSが201-300位)と下層(QSが301-500位)の大学が混在している。
論文 参考訳(メタデータ) (2020-10-22T15:11:14Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。